DOI QR코드

DOI QR Code

Inductive Shunt 피드백을 이용한 고선형성 광대역 저잡음 증폭기

Highly Linear Wideband LNA Design Using Inductive Shunt Feedback

  • 정남휘 (한국항공대학교 항공전자 및 정보통신공학부) ;
  • 조춘식 (한국항공대학교 항공전자 및 정보통신공학부)
  • Jeonng, Nam Hwi (School of Electronics, Telecommunication and Computer Engineering, Korea Aerospace University) ;
  • Cho, Choon Sik (School of Electronics, Telecommunication and Computer Engineering, Korea Aerospace University)
  • 투고 : 2013.08.29
  • 심사 : 2013.10.15
  • 발행 : 2013.11.30

초록

저 잡음 증폭기는 RF 수신단의 필수적인 요소이며, 다양한 무선시스템에서 사용하기 위하여 넓은 주파수 범위에서 동작하도록 요구된다. 전압 이득, 반사 손실, 잡음 지수, 선형성과 같은 중요한 성능지표들을 신중히 다루어서, 제안하는 LNA의 주요한 성능으로 역할을 하게끔 한다. Buffer 단에서 peaking 인덕터를 사용하며 전체적으로 cascade 구조로써 inductive shunt feedback을 LNA 입력 단에 성공적으로 적용하였다. 광대역 정합 주파수를 얻기 위한 설계식은 상대적으로 간단한 회로구성을 통해 도출된다. 입력 임피던스의 주파수 응답 분석을 위하여 pole과 zero를 광대역 응답을 실현하기 위한 특성으로 기술하였다. 입력 단에 게이트와 드레인 사이의 인덕터는 출력의 3차 고조파를 감소시킴으로 선형성을 크게 향상시킬 수 있다. 제안하는 회로를 $0.18{\mu}m$의 CMOS 공정으로 제작하였고, Pad를 포함한 광대역 LNA의 칩 면적은 $0.202mm^2$이다. 측정 결과는 1.5~13 GHz에서 입력손실은 -7 dB 이하이고, 전압 이득은 8 dB 이상이며, 잡음 지수는 6~9 dB 정도이다. 그리고 IIP3는 8 GHz에서 2.5 dBm이며, 1.8 V 전압에서 14 mA 전류를 소모한다.

Low noise amplifiers(LNAs) are an integral component of RF receivers and are frequently required to operate at wide frequency bands for various wireless systems. For wideband operation, important performance metrics such as voltage gain, return loss, noise figures and linearity have been carefully investigated and characterized for the proposed LNA. An inductive shunt feedback configuration is successfully employed in the input stage of the proposed LNA which incorporates cascaded networks with a peaking inductor in the buffer stage. Design equations for obtaining low and high input matching frequencies are easily derived, leading to a relatively simple method for circuit implementation. Careful theoretical analysis explains that poles and zeros are characterized and utilized for realizing the wideband response. Linearity is significantly improved because the inductor between gate and drain decreases the third-order harmonics at the output. Fabricated in $0.18{\mu}m$ CMOS process, the chip area of this LNA is $0.202mm^2$, including pads. Measurement results illustrate that input return loss shows less than -7 dB, voltage gain greater than 8 dB, and a little high noise figure around 7~8 dB over 1.5~13 GHz. In addition, good linearity(IIP3) of 2.5 dBm is achieved at 8 GHz and 14 mA of current is consumed from a 1.8 V supply.

키워드

참고문헌

  1. A. Meaamar, B. C. Chye, D. M. Anh, and Y. K. Seng, "A 3-8 GHz low-noise CMOS amplifier", IEEE Microwave and Wireless Components Letters, vol. 19, no. 4, pp. 245-247, Apr. 2009. https://doi.org/10.1109/LMWC.2009.2015512
  2. S. K. Hampel, O. Schmitz, M. Tiebout, and I. Rolfes, "Inductorless 1-10.5 GHz Wideband LNA for multistandard applications", IEEE Asian Solid-State Circuits Conference, pp. 269-272, 2009.
  3. H. -K. Chen, Y. -S. Lin, and S. -S. Lu, "Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a $\pi$-match input network", IEEE Trans. Microwave Theory and Tech., vol. 58, no. 8, pp. 2092-2104, Aug. 2010. https://doi.org/10.1109/TMTT.2010.2052406
  4. P. -Y. Chang, S. S. H. Hsu, "A compact 0.1-14-GHz ultra-wideband low-noise amplifier in 0.13- ${\mu}m$ CMOS", IEEE Trans. Microwave Theory and Tech., vol. 58, no. 10, pp. 2575-2581, Oct. 2010. https://doi.org/10.1109/TMTT.2010.2063832
  5. C. -T. Fu, C. -N. Kuo, and S. S. Taylor, "Lownoise amplifier design with dual reactive feedback for broadband simultaneous noise and impedance matching", IEEE Trans. Microwave Theory and Tech., vol. 58, no. 4, pp. 795-806, Apr. 2010. https://doi.org/10.1109/TMTT.2010.2041570
  6. M. Okushima J. Borremans, D. Linten, and G. Groeseneken, "A DC-to-22 GHz 8.4 mW compact dual-feedback wideband LNA in 90 nm digital CMOS", IEEE RFIC Symp., pp. 295-298, 2009.
  7. J. Borremans, P. Wambacq, C. Soens, Y. Rolain, and M. Kuijk, "Low-area active-feedback low-noise amplifier design in scaled digital CMOS", IEEE J. Solid-State Circuits, vol. 43, no. 11, pp. 2422-2432, Nov. 2008. https://doi.org/10.1109/JSSC.2008.2005434
  8. D. C. Howard, J. Poh, T. S. Mukerjee, and J. D. Cressler, "A 3-20 GHz SiGe HBT ultra-wideband LNA with gain and return loss control for multiband wireless applications", IEEE Int. Midwest Symp. on Circuits and Systems, pp. 445-448, 2010.
  9. A. I. A. Galal, R. K. Pokharel, H. Kanay, and K. Yoshida, "Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18 m CMOS process", Silicon Monolithic Integrated Circuits in RF Systems, pp. 33-36, 2010.
  10. Q. Li, Y. P. Zhang, "A 1.5-V 2-9.6-GHz inductorless low-noise amplifier in 0.13 ${\mu}m$ CMOS", IEEE Trans. Microwave Theory and Tech., vol. 55, no. 10, pp. 2015-2023, Oct. 2007. https://doi.org/10.1109/TMTT.2007.905495
  11. D. C. Howard, X. Li, and J. D. Cressler, "A low power 1.8-2.6 dB noise figure, SiGe HBT wideband LNA for multiband wireless applications", IEEE Bipolar/BiCMOS Circuits and Technology Meeting, pp. 55-58, 2009.
  12. S. -F. Chao, J. -J. Kuo, C. L. Lin, M. -D. Tsai, and H. Wang, "A DC-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique", IEEE Microwave and Wireless Components Letters, vol. 18, no. 7, pp. 482-484, Jul. 2008. https://doi.org/10.1109/LMWC.2008.925099
  13. Z. -Y. Huang, C. -C. Huang, C. -C. Chen, C. -C. Hung, and C. -M. Chen, "An inductor-coupling resonated CMOS low noise amplifier for 3.1-10.6 GHz ultra-wideband system", IEEE Int. Sym. Circuits and Systems, pp. 221-224, 2009.
  14. Y. -J. Lin, S. S. H. Hsu, J. -D. Jin, and C. Y. Chan, "A 3.1-10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique", IEEE Microwave and Wireless Components Letters, vol. 17, no. 3. pp. 232-234, Mar. 2007.
  15. H. Zhang, X. Fan, and E. S´anchez. Sinencio, "A low-power, linearized, ultra-wideband LNA design technique", IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 320-330, Feb. 2009. https://doi.org/10.1109/JSSC.2008.2011033
  16. H. Zhang, E. S´anchez-Sinencio, "Linearization techniques for CMOS low noise amplifiers: A tutorial", IEEE Trans. Circuits and Systems I, vol. 58, no. 1, pp. 22-36, Jan. 2011. https://doi.org/10.1109/TCSI.2010.2055353