DOI QR코드

DOI QR Code

Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin

분포형 생태수문모형 개발 및 내성천 유역에의 적용

  • Choi, Daegyu (Pukyong National University, Institute of Environmental and Marine Science, Daeyeon Campus) ;
  • Kim, In-Hwan (Pukyong National University, Department of Spatial Information Engineering, Daeyeon Campus) ;
  • Kim, Jeongsook (Dongseo University, Division of Energy and Bio-Engineering, Dongseo University) ;
  • Kim, Sangdan (Pukyong National University, Department of Environmental Engineering, Daeyeon Campus)
  • 최대규 (부경대학교 환경연구소) ;
  • 김인환 (부경대학교 공간정보시스템 공학과) ;
  • 김정숙 (동서대학교 에너지생명공학부) ;
  • 김상단 (부경대학교 환경공학과)
  • Received : 2013.06.25
  • Accepted : 2013.09.22
  • Published : 2013.11.30

Abstract

Distributed ecohydrological model which can simulate hydrological components, vegetation and landsurface temperature using practically available input and observed data with minimum parameters is introduced. This model is designed to properly simulate in area with lack of observed data. Parameter estimation and calibration of the model can be carried out with indirectly estimated data (monthly surface runoff by NRCS-CN method and annual actual vaporization by empirical equation) and remote sensing data (NDVI, LST) instead of observed data. We applied this model in the Naeseong creek basin to evaluate the model validity. Firstly, we found the sensitive parameters which largely influence the simulation results by sensitivity analysis, and then hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature were simulated over 10 years (2001 to 2010) using calibrated parameters. Parameters are estimated by optimization method. It is shown that most of grids are well simulated. In the case of streamflow and water temperature, we checked two observed points in the outlet of watershed and it is shown that streamflow and water temperature are properly simulated as well. Hence, it can be shown that this model properly simulate the hydrological components, vegetation, land-surface temperature, routed streamflow and water temperature as well, even though in despite of using limited input data and minimum parameters.

본 논문에서 소개되는 분포형 생태수문모형은 현실적으로 확보 가능한 입력자료와 최소한의 매개변수를 이용하여 유역의 수문, 식생, 지표온도를 모의하는 모형이다. 개발된 모형은 내성천 유역에 대해 적용하여 모형의 활용가능성을 살펴보았다. 우선적으로 매개변수에 대해 민감도 분석을 실시하여 모의결과에 많은 영향을 주는 매개변수를 선별해보았으며 이후 최적화 기법을 통해 모형의 매개변수를 추정하여 내성천 유역의 최근 10년간(2001~2010)의 수문, 식생, 지표온도 그리고 추적(routing)을 통한 하천유량 및 하천수온을 모의하였다. 최적화 기법을 통해 추정자료를 이용하여 매개변수를 추정하였으며 일부 격자를 제외한 대다수의 격자에서 적절히 모의된 것을 확인하였다. 하천유량 및 하천수온의 경우 단위 유역 말단 두 지점에 대해 검증을 실시하였으며 하천유량 및 하천수온 적절히 모의된 것을 확인할 수 있었다. 실제 유역인 내성천 유역을 대상으로 분포형 생태수문모형이 최소한(현실적으로 확보 가능한)의 입력자료와 매개변수를 이용함에도 불구하고 유역 수문순환 및 식생을 적절히 설명하고 있음을 살펴볼 수 있다.

Keywords

References

  1. Budyko, M.I. (1974). Climate and Life. Academic: San diego, CA; 508.
  2. Chaudhry, M.H. (1993). Open Channel Flow. Prentice Hall, p. 483.
  3. Choi, C.H., Choi, D.G., Choi, H.I., Kim, K.H., and Kim, S.D. (2012a). "Development of a Grid-Based Daily Land Surface Temperature Prediction Model considering the Effect of Mean Air Temperature and Vegetation." Journal of Korean Society on Water Environment, Vol. 28, No. 1, pp. 137-147.
  4. Choi, D.G., Choi, H.I., Kim, K.H., and Kim, S.D. (2012b). "Development of Ecohydrologic Model for Simulating Water Balance and Vegetation Dynamics." Journal of Korean Society on Water Environment, Vol. 28, No. 4, pp. 582-594.
  5. Cuo, L., Giambelluca, T.W., and Ziegler, A.D. (2011). "Lumped parameter sensitivity analysis of a distributed hydrological model within tropical and temperate catchments." Hydrological. Processes, Vol. 25, pp. 2405-2421. doi: 10.1002/hyp.8017
  6. Elias, E.A., Cichota, R., Torriani, H.H., Lier, Q., and van de J. (2004). "Analytical soil-temperature model correction for temporal variation of daily amplitude." Soil Science Society of America Journal, Vol. 68, No. 3, pp. 784-788. https://doi.org/10.2136/sssaj2004.7840
  7. Fekete, B.M., Vorosmarty, C.J., and Lammers, R.B., (2001). "Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error."Water Resources Research, Vol. 37, No. 7, pp. 1955-1967. https://doi.org/10.1029/2001WR900024
  8. Fu, B.P. (1981). "On the calculation of the evaporation from land surface." Scientia Atmospherica Sinica, Vol. 5, pp. 23-31.
  9. Harris, R.N. (2007). "Variations in air and ground temperature and the POM-SAT model: results from the Northern Hemisphere" Climate of the Past, Vol. 3, pp. 611-621. https://doi.org/10.5194/cp-3-611-2007
  10. Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., and Weltzin, J.F. (2004). "Convergence across biomes to a common rain-use efficiency." Nature, Vol. 429, No. 6992, pp. 651-654. https://doi.org/10.1038/nature02561
  11. Jackson, R.B., Carpenter, S.R., Dahm, C.N., McKnight, D.M., Naiman, R.J., Postel, S.L., and Running, S.W. (2001). "Water in a changing world." Ecological Applications, Vol. 11, pp. 1027-1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2
  12. Jensen, J.R. (2000). Remote sensing of the environment: An earth resource perspective, Prentice Hall.
  13. Ji, Z.G. (2008). Hydrodynamics and water quality: modeling rivers, lake, and estuaries, John Wiley & Sons, Hoboken, New Jersey, U.S. pp. 471-472.
  14. Kang, S., Kim, S., Oh, S., and Lee, D. (2000). "Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature." Forest Ecology and Management, Vol. 136, pp. 173-184. https://doi.org/10.1016/S0378-1127(99)00290-X
  15. Kim, E.H., Kang, S.K., Lee, B.R., Kim, K.H., and Kim, J. (2007). "Parameterization and Application of Regional Hydro-Ecologic Simulation System(RHESSys) for Integrating the Eco-hydrological Processes in the Gwangneung Headwater Catchment" Korean Journal of Agriculture and Forest Meteorology, Vol. 9, No. 2, pp. 121-131 https://doi.org/10.5532/KJAFM.2007.9.2.121
  16. Kouwen, N., Soulis, E., Pietroniro, A., Donald, J., and Harrington, R. (1993). "Grouped Response Units for Distributed Hydrologic Modeling." Journal of Water Resource Planning Management, Vol. 119, No. 3, pp. 289-305. doi: 10.1061/(ASCE)0733-9496(1993)119:3(289)
  17. Kozlowski, T.T., and Pallardy, S.G. (1997). Physiology of Woody Plants, Academic Press, San Diego.
  18. Lee, B.R., Kang, S.K., Kim, E.S., Hwang, T.H., Lim, J. H., and Kim, J. (2007). "Evaluation of a Hydro-ecologic Model, RHESSys (Regional Hydro Ecologic Simulation System): Parameterization and Application at two Complex Terrain Watersheds." Korean Journal of Agricultural and Forest Meteorology, Vol. 9, No. 4, pp. 247-259 https://doi.org/10.5532/KJAFM.2007.9.4.247
  19. Lei, S., Daniels, J.L., Bian, Z., and Wainaina, N. (2011). "Improved soil temperature modeling." Environmental Earth Science, Vol. 62, No. 6, pp. 1123-1130. https://doi.org/10.1007/s12665-010-0600-9
  20. Liston, G.E., Sud, Y.C., and Wood, E.F. (1994). "Evaluating GCM land surface hydrology parameterization by computing river discharges using a runoff routing model." Journal of Applied Meteorology, Vol. 33, pp. 394-405. https://doi.org/10.1175/1520-0450(1994)033<0394:EGLSHP>2.0.CO;2
  21. Mahrer, Y., and Katan, J. (1981). "Spatial soil temperature regime under transparent polyethylene mulch: numerical and experimental studies." Soil Science, Vol. 131, pp. 83-87.
  22. Marshall, T.J., Holmes, J.W., and Rose, C.W. (1996). Soil physics, 3rd edition, Cambridge University Press, New York, NY.
  23. Mihalakakou, G. (2002). "On estimating soil surface temperature profiles." Energy Build, Vol. 34, pp. 251-259. https://doi.org/10.1016/S0378-7788(01)00089-5
  24. Miller, J., Russel, G., and Caliri, G. (1994). "Continental scale river flow in climate models." Journal of Climate, Vol. 7, pp. 914-928. https://doi.org/10.1175/1520-0442(1994)007<0914:CSRFIC>2.0.CO;2
  25. Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through conceptual models part I-A discussion of principles." Journal of Hydrology, Vol. 10, No. 3, pp. 282-290. https://doi.org/10.1016/0022-1694(70)90255-6
  26. Nijssen, B., Lettenmaier, D.P., Liang, X., Wetzel, S.W., and Wood, E.F. (1997). "Streamflow Simulation for Continental-scale River Basins." Water Resources Research, Vol. 33, No. 4, pp. 711-724. https://doi.org/10.1029/96WR03517
  27. Olivera, F., Lear, M.S., Famiglietti, J.S., and Asante, K. (2002). "Extracting Low Resolution River Networks from High-Resolution Digital Elevation Models." Water Resources Research, Vol. 38, No. 11, pp. 131-138, doi: 101029/2001WR000726. https://doi.org/10.1029/2001WR000726
  28. Ott, M., Su, Z., Schumann, A.H., and Schultz, G.A. (1991). "Development of a distributed hydrological model for flood forecasting and impact assessment of land-use change in the International Mosel river basin." In Proc. of the Vienna Symposium. IAHS Pub (No. 201).
  29. Overgaard, J., Rosbjerg, D., and Butts, M.B. (2006). "Land- surface modelling in hydrological perspective -a review." Biogeosciences, Vol. 3, pp. 229-241. https://doi.org/10.5194/bg-3-229-2006
  30. Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 193, No. 1032, pp. 120-145.
  31. Pike, J.G. (1964). "The estimation of annual runoff from meteorological data in a tropical climate." Journal of Hydrology, Vol. 2, pp. 116-123. https://doi.org/10.1016/0022-1694(64)90022-8
  32. Quevedo, D.I., and Frances, F. (2008). "A conceptual dynamic vegetation-soil model for arid and semiarid zones." Hydrology and Earth System Sciences, Vol. 12, pp. 1175-1187. https://doi.org/10.5194/hess-12-1175-2008
  33. Raina, R. (2004). Development of a cell-based streamflow routing model. Dissertation, Texas A&M University, Texas, U.S.
  34. Rodriguez-Iturbe, I. (2000). "Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics." Water Resource Research, Vol. 36, No. 1, pp. 3-9, doi: 10.1029/1999WR900210.
  35. Rodriguez-Iturbe, I., and Porporato, A. (2004). Ecohydrology ofWater-Controlled Ecosystems. Cambridge University Press, New York.
  36. Rosenberg, N.J., Blad, B.L., and Verma, S.B. (1983). Microclimate: The Biological Environment, 2nd ed., Wiley, New York, NY.
  37. Shin, H.J., Park, M.J., and Kim, S.J. (2012). "Evaluation of Forest Watershed Hydro-Ecology using Measured Data and RHESSys Model-For the Seolmacheon Catchment-." Korea Water Resources Association, Vol. 45, No. 2, pp. 1293-1307 https://doi.org/10.3741/JKWRA.2012.45.12.1293
  38. Sivapalan, M., Yaeger, M.A., Harman, C.J., Xu, X., and Troch, P.A. (2011). "Functional model of water balance variability at the catchment scale. 1: Evidence of hydrologic similarity and space-time symmetry." Water Resources Research, Vol. 47, W02522, doi:10.1029/2010WR009568.
  39. Thunholm, B. (1990). "A comparison of measured and simulated soil temperature using air temperature and soil surface energy balance as boundary condition." Agricultural and Forest Meteorology, Vol. 53, pp. 59-72. https://doi.org/10.1016/0168-1923(90)90124-O
  40. Vorosmarty, C.J., Moore III, B., Grace, A., Gildea, M., Melillo, J., Peterson, B., Rasteller, E., and Steudler, P. (1989). "Continental-scale model of water balance and fluvial transport: An application to South America." Global Biogeochemical Cycles, Vol. 3 pp. 241-265. https://doi.org/10.1029/GB003i003p00241
  41. Wagener, T., Sivapalan, M., Troch, P.A., and Woods, R.A. (2007). "Catchment classification and hydrologic similarity." Geography Compass, Vol. 1, No. 4, pp. 901-931, doi:10.1111/j.1749-8198.2007.00039.x.
  42. Widen-Nilsson, E., Halldin, S. and Xu, C. (2007). "Global water-balance modelling with WASMOD-M: Parameter estimation and regionalsation." Journal of Hydrology, Vol. 340, pp. 105-118. https://doi.org/10.1016/j.jhydrol.2007.04.002
  43. Zhang, L., Hickel, K., Dawes, W.R., Chiew, F.H.S., Western, A.W., and Briggs, P.R. (2004). "A rational function approach for estimating mean annual evapotranspiration." Water Resources Research, Vol. 40, W02502, doi:10.1029/2003WR002710.
  44. Zheng, D., Hunt, Jr., R., and Running, S.W. (1993). "A daily soil temperature model based on air temperature and precipitation for continental applications." Climate Research, Vol. 2, pp. 183-191. https://doi.org/10.3354/cr002183