DOI QR코드

DOI QR Code

액상 당밀과 질산성 질소의 C/N 비율에 따른 Pseudomonas sp. KY1의 탈질 능력 및 그 최적비율에 관한 연구

Enhancement of Denitrification Capacity of Pseudomonas sp. KY1 through the Optimization of C/N ratio of Liquid Molasses and Nitrate

  • 이규연 (서울대학교 건설환경공학부) ;
  • 이병선 (한국농어촌공사 농어촌연구원) ;
  • 신도연 (한국지질자원연구원 희유자원연구센터) ;
  • 최용주 (스탠포드대학교 토목환경공학과) ;
  • 남경필 (서울대학교 건설환경공학부)
  • Lee, Kyuyeon (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Lee, Byung Sun (Rural Research Institute, Korea Rural Community Corporation) ;
  • Shin, Doyun (Rare Metals Research Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Choi, Yongju (Department of Civil and Environmental Engineering, Stanford University) ;
  • Nam, Kyoungphile (Department of Civil and Environmental Engineering, Seoul National University)
  • 투고 : 2013.08.19
  • 심사 : 2013.09.23
  • 발행 : 2013.09.30

초록

본 연구에서는 액상당밀을 외부탄소원으로 이용하는 탈질미생물 Pseudomonas sp. KY1의 탈질능력을 확인하고 최적의 C/N 비율을 도출하였다. 회분식 실험 결과, C/N 비율 3/1에서 $0.0263hr^{-1}$의 유사1차반응상수가 도출되었고, 이 비율에서 100 mg-N/L의 초기 질산성질소는 실험시작 후 약 100시간 이내에 약 80%의 제거율을 보였다. C/N 비율 3/1의 컬럼 실험에서 초기 질산성질소 농도 100 mg-N/L의 오염수(유속 0.3 mL/min)는 실험시작 후 172시간(35 PV) 이후부터 실험 종료 시(62 PV)까지 최대 95%의 탈질효율을 보였고, 이 비율에서 2차 오염원으로 작용할 수 있는 잔류당밀의 농도를 최소화(125~180 mg-COD/L) 할 수 있었다.

This study was conducted to identify an optimal ratio of carbon to nitrogen (C/N ratio) for denitrification of nitrate using molasses as an external carbon source. A series of batch and column tests was conducted using an indigenous bacterium Pseudomonas sp. KY1 isolated from a nitrate-contaminated soil. For the initial nitrate-nitrogen concentration of 100 mg-N/L, batch test results indicated that C/N ratio of 3/1 was the optimal ratio with a relatively high pseudo-first-order reaction constant of $0.0263hr^{-1}$. At C/N ratio of 3/1, more than 80% of nitrate-nitrogen concentration of 100 mg-N/L was removed in 100 hrs. Results of column tests with a flow velocity of 0.3 mL/min also indicated that the C/N ratio of 3/1 was optimal for denitrification with minimizing remaining molasses concentrations. After 172 hrs of column operation (35 pore volumes) with an influent nitrate-nitrogen concentration of 100 mg-N/L, the effluent met the drinking water standard (i.e., 10 mg $NO_3$-N/L).

키워드

참고문헌

  1. Moon, H. S., Ahn, K.-H., Lee, S., Nam, K. and Kim, J. Y., "Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system," Environ. Pollut., 129, 499-507(2004). https://doi.org/10.1016/j.envpol.2003.11.004
  2. Aslan, S. and Turkman, A., "Biological denitrification of drinking water using various natural organic solid substrates," Water Sci. Technol., 48(11), 489-495(2003).
  3. Avnimelech, Y., Diab, S. and Kochba, M., "Development and evaluation of a biofilter for turbid and nitrogen rich irrigation water," Water Res., 27(5), 785-790(1993). https://doi.org/10.1016/0043-1354(93)90141-4
  4. Soares, M. I. M. and Abeliovich, A., "Wheat straw as substrate for water denitrification," Water Res., 32(12), 3790-3794(1998). https://doi.org/10.1016/S0043-1354(98)00136-5
  5. Su, C. and Puls, R. W., "Removal of added nitrate in the single, binary, and ternary systems of cotton burr compost, zerovalent iron, and sediment: implications for groundwater nitrate remediation using permeable reactive barriers," Chemosphere, 67, 1653-1662(2007). https://doi.org/10.1016/j.chemosphere.2006.09.059
  6. Volokita, M., Abeliovich, A. and Soares, M. I. M., "Denitrification of groundwater using cotton as energy source," Water Sci. Technol., 34(1), 379-385(1996).
  7. Boaventura, R. A. R. and Rodrigues, A. E., "Denitrification kinetics in a rotating disk biofilm reactor," Chem. Eng. J., 65, 227-235(1997). https://doi.org/10.1016/S1385-8947(97)00019-3
  8. Cunningham, A., Sharp, R. R., Hiebert, R. and James, G., "Subsurface biofilm barriers for the containment and remediation of contaminated groundwater," Bioremediat. J., 7, 151-164(2003). https://doi.org/10.1080/713607982
  9. Dutta, L., Nuttall, H. E., Cunningham, A., James, G. and Hiebert, R., "In situ biofilm barriers: case study of a nitrate groundwater plume, Albuquerque, New Mexico," Remediat. J., 15, 101-111(2005). https://doi.org/10.1002/rem.20063
  10. Lee, D., Lee, I., Choi, Y. and Bae, J., "Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification," Proc. Biochem., 36, 1215-1224(2001). https://doi.org/10.1016/S0032-9592(01)00163-7
  11. Monteith, H. D., Bridle, T. R. and Sutton, P. M., "Industrial waste carbon sources for biological denitrification," Prog. Water Technol., 12, 127-141(1980).
  12. Skrinde, J. R. and Bhagat, S. K., "Industrial wastes as carbon sources in biological denitrification," J. Water Pollut. Control Fed., 54(4), 370-377(1982).
  13. Kapoor, A. and Viraraghavan, T., "Nitrate removal from drinking water-review," J. Environ. Eng., 123(4), 371-380(1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:4(371)
  14. Louzeiro, N. R., Mavinic, D. S., Oldham, W. K., Meisen, A. and Gardner, I. S., "Process control and design considerations for methanolinduced denitrification in a sequencing batch reactor," Environ. Technol., 24, 161-169(2003). https://doi.org/10.1080/09593330309385547
  15. Lee, B. S., Lee, K., Shin, D., Choi, J. H., Kim, Y. J., and Nam, K., "Denitrification by a heterotrophic denitrifier with an aid of slowly released molasses," J. Soil Groundwater Environ. Korea, 15(4), 30-38(2010).
  16. Almeida J. S., Reis, M. A. M. and Carrondo, M. J. T., "Competition between nitrate and nitrite reduction in denitrification by Pseudomonas fluorescens," Biotechnol. Bioeng., 46, 476-484(1995). https://doi.org/10.1002/bit.260460512
  17. Ye, R. W., Arunakumari, A., Averill, B. A. and Tiedje, J. M., "Mutants of Pseudomonas fluorescens deficient in dissimiliatory nitrite reduction are also altered in nitric oxide reduction," J. Bacteriol., 174(8), 2560-2564(1992). https://doi.org/10.1128/jb.174.8.2560-2564.1992
  18. Betlach, M. R. and Tiedje, J. M., "Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification," Appl. Environ. Microbiol., 42(6), 1074-1084(1981).
  19. Her, J. J. and Huang, J. S., "Influences of carbon source and C/N ration on nitrate/nitrite denitrification and carbon breakthrough," Bioresour. Technol., 54(1), 45-51(1995). https://doi.org/10.1016/0960-8524(95)00113-1
  20. Narkis, N., Rebhun, M. and Sheindorf, C. H., "Denitrification at various carbon to nitrogen ratios," Water Res., 13, 93-98(1979). https://doi.org/10.1016/0043-1354(79)90259-8
  21. Weier, K. L., Doran, J. W., Power, J. F. and Walters, D. T., "Denitrification and the dinitrogen/nitrous oxide ratio as affected by soil water, available carbon, and nitrate," Soil Sci. Soc. Am. J., 57(1), 66-72(1993). https://doi.org/10.2136/sssaj1993.03615995005700010013x
  22. Kaplan, D. L., Riley, P. A., Pierce, J. and Kaplan, A. M., "Denitrification of high nitrate loads-efficiencies of alternative carbon sources," Int. Biodeterior., 23, 233-248(1987). https://doi.org/10.1016/0265-3036(87)90003-0
  23. Quan, Z. X., Jin, Y. S., Yin, C. R., Lee, J. J. and Lee, S. T., "Hydrolyzed molasses as an external carbon source in biological nitrogen removal," Bioresour. Technol., 96(15), 1690-1695(2005). https://doi.org/10.1016/j.biortech.2004.12.033
  24. Siu, D. C. and Henshall, A., "Ion chromatographic determination of nitrate and nitrite in meat products," J. Chromatogr. A, 804, 157-160(1998). https://doi.org/10.1016/S0021-9673(97)01245-4
  25. Rust, C. M., Aelion, C. M. and Flora, J. R. V., "Control of pH during denitrification in sub-surface sediment microcosm using encapsulated phosphate buffer," Water Res., 34(5), 1447-1454(2000). https://doi.org/10.1016/S0043-1354(99)00287-0
  26. Brady, N. C. and Weil, R. R., "The nature and properties of soils," Prentice Hall, New Jersey 13th ed(2002).
  27. Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N. and Bemment, C. D. "Nitrate attenuation in groundwater: a review of biogeochemical controlling processes," Water Res., 42(16), 4215-4232(2008). https://doi.org/10.1016/j.watres.2008.07.020