DOI QR코드

DOI QR Code

Micro-Hydropower System with a Semi-Kaplan Turbine for Sewage Treatment Plant Application: Kiheung Respia Case Study

하수처리장 적용을 위한 Semi-카플란 수차가 장착된 마이크로수력발전 시스템: 기흥레스피아 사례

  • Chae, Kyu-Jung (Environmental Technology Lab, R&BD Center, Kolon Global Corp.) ;
  • Kim, Dong-Soo (Environmental Technology Lab, R&BD Center, Kolon Global Corp.) ;
  • Cheon, Kyung-Ho (Environmental Technology Lab, R&BD Center, Kolon Global Corp.) ;
  • Kim, Won-Kyoung (R&D Center, Halla Construction and Engineering) ;
  • Kim, Jung-Yeon (R&D Center, Halla Construction and Engineering) ;
  • Lee, Chul-Hyung (Renewable Energy Research Department, Korea Institute of Energy Research) ;
  • Park, Wan-Soon (Renewable Energy Research Department, Korea Institute of Energy Research)
  • 채규정 (코오롱글로벌 R&BD Center 환경기술연구소) ;
  • 김동수 (코오롱글로벌 R&BD Center 환경기술연구소) ;
  • 천경호 (코오롱글로벌 R&BD Center 환경기술연구소) ;
  • 김원경 (한라건설 기술연구소) ;
  • 김정연 (한라건설 기술연구소) ;
  • 이철형 (한국에너지기술연구원 신재생에너지연구부) ;
  • 박완순 (한국에너지기술연구원 신재생에너지연구부)
  • Received : 2013.03.14
  • Accepted : 2013.05.13
  • Published : 2013.05.30

Abstract

Small scale hydropower is one of most attractive and cost-effective energy technologies for installation within sewage treatment plants. This study was conducted to evaluate the potential of a semi-kaplan micro-hydropower (MHP) system for application to sewage treatment plants with high flow fluctuations and a low head. The semi-kaplan MHP is equipped with an adjustable runner blade, and is without a guide vane, so as to reduce the incidence of mechanical problems. A MHP rating 13.4 kWp with a semi-kaplan turbine has been considered for Kiheung Respia sewage treatment plant, and this installation is estimated to generate 86.8 MWh of electricity annually, which is enough to supply electricity to over 25 households, and equivalent to an annual reduction of 49 ton $CO_2$. The semi-kaplan turbine showed a 90.2% energy conversion efficiency at the design flow rate of 0.35 $m^3/s$ and net head of 4.7 m, and was adaptable to a wide range of flow fluctuations. Through the MHP operation, approximately 2.1% of total electricity demand of Kiheung Respia sewage treatment plant will be achievable. Based on financial analysis, an exploiting MHP is considered economically acceptable with an internal rate of return of 6.1%, net present value of 15,539,000 Korean Won, benefit-cost ratio of 1.08, and payback year of 15.5, respectively, if initial investment cost is 200,000,000 Korean Won.

소수력발전은 하수처리장 에너지 자립을 위한 효과적인 대안이다. 본 연구는 유량변동이 크고 유효낙차가 낮은 중소형 하수처리장(기흥레스피아) 적용을 위해 피치조절형 세미카플란(semi-kaplan) 마이크로수력발전의 적용 타당성을 평가하였다. 가변피치 semi-kaplan 수차는 유량조절을 위한 가이드베인은 생략하고 피치조절형 런너를 장착하여 기계적 결함은 줄이면서 유량변동이 큰 처리장에 특화된 기술이다. 마이크로수력발전 시스템은 설계조건(유량 0.35 $m^3/s$, 유효낙차 4.7 m)에서 90.2%의 수차효율 달성이 가능하였고 발전용량은 13.4 kW로 산정되었다. 설비가동률 74%로 가동 시 연간 약 86.8 MWh 에너지 생산을 통해 2.1%의 에너지 자립이 가능하고 이는 연간 49톤의 $CO_2$ 감축효과와 맞먹는다. 경제성 평가결과 초기 건설공사비가 200,000,000원 이하인 경우에는 내부수익률은 6.1%, 순현가는 15,539,000원, 편익-비용률은 1.08, 투자회수년은 15.5년으로 경제성이 충분한 것으로 나타났다.

Keywords

References

  1. Water Supply and Sewerage Policy Office, Strategic plan for the energy independence in the municipal wastewater treatment plant, Ministry of Environment (MOE) Republic of Korea(2010).
  2. Park, W. S., "Case study of small hydropower developments using existing facilities," J. Solar Energy Soc. Kor., 3(4), 29-34(2004).
  3. Na, D. H., Feasibility study on the construction of small hydro-power plants at the discharge point of Gumi sewage treatment plant, Ph. D. Dissertation, Kumoh National Institute of Technology(2010).
  4. Santolin, A., Cavazzini, G., Pavesi, G., Ardizzon, G. and Rossetti, A., "Techno-economical method for the capacity sizing of a small hydropower plant," Energy Conver. Manage., 52(7), 2533-2541(2011). https://doi.org/10.1016/j.enconman.2011.01.001
  5. Alonso-Tristan, C., Gonzalez-Pena, D., Diez-Mediavilla, M., Rodriguez-Amigo, M. and Garcia-Calderon, T., "Small hydropower plants in Spain: A case study," Renew. Sust. Energy Rev., 15(6), 2729-2735(2011). https://doi.org/10.1016/j.rser.2011.03.029
  6. Lee, C. H. and Park, W. S., "Hydraulic performance of vertical axis propeller type hydro turbine for small hydropower plants," Trans. Kor. Hydro. New Energy Soc., 14(2), 171-176(2003)
  7. Karlis, A. D. and Papadopoulos, D. P., "A systematic assessment of the technical feasibility and economic viability of small hydroelectric system installations," Renew Energy, 20(2), 253-261(2000). https://doi.org/10.1016/S0960-1481(99)00113-5
  8. Natural Resources Canada, RETScreen manual book, http://www.retscreen.net(2004).
  9. Park, W. S. and Lee, C. H, "Hydrologic performance characteristics variation of small scale hydro power plant with variation of inflow," J. Kor. Water Resour. Assoc., 43(4), 393-398(2010). https://doi.org/10.3741/JKWRA.2010.43.4.393
  10. Dursun, B. and Gokcol, C., "The role of hydroelectric power and contribution of small hydropower plants for sustainable development in Turkey," Renew Energy, 36(4), 1227-1235(2011). https://doi.org/10.1016/j.renene.2010.10.001
  11. Aslan, Y., Arslan, O. and Yasar, C., "A sensitivity analysis for the design of small-scale hydropower plant: Kayabogazi case study," Renew Energy, 33(4), 791-801(2008). https://doi.org/10.1016/j.renene.2007.04.011
  12. Kosnik, L., "The potential for small scale hydropower development in the US," Energy Policy, 38(10), 5512-5519(2008).
  13. Korea Rural Community Corporation, Comprehensive report of investment project for feasibility analysis (2010) (in Korean).
  14. Park, W. S. and Lee, C. H, "Analysis of performance characteristic for small scale hydro power plant with rainfall condition change," in Proceedings of Fall Conference, The Korean Society for New and Renewable Energy, Cheonbuk Provincial Office, pp. 614-618(2009).

Cited by

  1. A Study on the ICT-based Benefit Improvement of the Chung-ju Multipurpose Dam for Climate Change vol.40, pp.8, 2018, https://doi.org/10.4491/KSEE.2018.40.8.303