DOI QR코드

DOI QR Code

Capture of Carbon Dioxide Emitted from Coal-Fired Power Plant Using Seawater

해수를 이용한 석탄 화력발전소의 이산화탄소 포집 연구

  • Han, Sang-Jun (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Kim, Dae-Kyeong (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Lee, Jae-Hee (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Park, Sang-Hyeok (Department of Environmental Engineering, The Catholic University of Korea) ;
  • Wee, Jung-Ho (Department of Environmental Engineering, The Catholic University of Korea)
  • 한상준 (가톨릭대학교 환경공학과) ;
  • 김대경 (가톨릭대학교 환경공학과) ;
  • 이제희 (가톨릭대학교 환경공학과) ;
  • 박상혁 (가톨릭대학교 환경공학과) ;
  • 위정호 (가톨릭대학교 환경공학과)
  • Received : 2013.03.19
  • Accepted : 2013.05.03
  • Published : 2013.05.30

Abstract

The present paper investigates the availability of seawater as the absorbents to capture carbon dioxide ($CO_2$) emitted from the coal fired power plant (CFPP). For the purpose of the study, readily obtainable alkali materials in CFPP such as coal fly ash (FA), NaOH and $Ca(OH)_2$ are added to seawater to prepare the absorbents and their $CO_2$ capture performances are discussed. FA can be effectively used the additives to increase $CO_2$ capture capacity of seawater to a some extent. This is ascribed that some alkali components in FA are leached into seawater and they contribute to $CO_2$ capture in the solution. However, their leaching amount and rate are restricted by the various ions in seawater. The performance of NaOH added seawater is even lower than that of NaOH added water because $OH^-$ is substantially consumed on $Ma(OH)_2$ production prior to carbonation. $CO_2$ absorption capacity of $Ca(OH)_2$ added seawater is slightly larger than that of $Ca(OH)_2$ added water. This is because that $Ca^{2+}$ which originally present in raw seawater can participate in carbonation reaction.

본 연구에서는 해수를 이용하여 석탄 화력발전소에서 발생하는 $CO_2$를 포집하기 위해 발전소에서 수급이 용이한 비산재, NaOH, $Ca(OH)_2$를 해수에 첨가하여 제조된 흡수제의 $CO_2$ 포집 성능을 고찰하였다. 비산재가 첨가된 해수의 $CO_2$ 포집성능은 순 해수에 비해 높아 비산재의 $CO_2$ 포집 효과는 유효하다. 그러나 해수 내 다양한 이온들에 의해 증류수에서 보다 비산재 내 유효 성분들의 침출량과 침출속도가 제한적이다. NaOH가 첨가된 해수는 $OH^-$ 손실이 일어나 증류수에 비해 $CO_2$ 포집량이 낮았고 다양한 이온의 상호 작용에 의해 포집 속도가 낮았다. $Ca(OH)_2$를 첨가한 경우, 해수에서의 $CO_2$ 포집 성능은 증류수 보다 높았는데 이는 해수 내 이미 존재하고 있던 $Ca^{2+}$ 중 일부가 탄산화 반응에 참여했기 때문으로 판단된다.

Keywords

References

  1. Gibbins, J. and Chalmers, H., "Carbon capture and storage," Energy Policy, 36(12), 4317-4322(2008). https://doi.org/10.1016/j.enpol.2008.09.058
  2. Kang, S. Y., Cho, K. C., Lee, G. H. and Oh, K. J., "$CO_2$ absorption/regeneration of sodium-based dry solbent and the effect of $SO_2$ concentration," J. Kor. Soc. Environ. Eng., 30(2), 225-233(2008).
  3. Song, H. J., Lee, S. M., Lee, J. H., Park, J. W., Jang, K. R., Shim, J. G. and Kim, J. H., "Absorption of carbon dioxide into aqueous potassium salt of serine," J. Kor. Soc. Environ. Eng., 31(7), 505-514(2009).
  4. Jin, Y. R., Jung,Y. H., Park, S. J. and Baek, I. H., "Study of $CO_2$ absorption characteristic and synthesis of 1-(2-methoxyethyl)- 3-methylimidazolium methanesulfonate ionic liquid," Kor. Chem. Eng. Res., 50(1), 35-40(2012). https://doi.org/10.9713/kcer.2012.50.1.035
  5. Nduagu, E., Bjorklof, T., Fagerlund, J., Maekilae, E., Salonen, J., Geerlings, H. and Zevenhoven, R., "Production of magnesium hydroxide from magnesium silicate for the purpose of $CO_2$ mineralization - part 2: Mg extraction modeling and application to different Mg silicate rocks," Minerals Eng., 30, 87-94(2012). https://doi.org/10.1016/j.mineng.2011.12.002
  6. OECD. Publishing, International Energy Agency, Energy technology perspectives 2010: Scenarios and strategies to 2050, Organisation for Economic Co-operation and Development (2010).
  7. Olivier, J. G., Janssens-Maenhout, G. and Peters, J., "Trends in global $CO_2$ emissions: 2012 report," Wyd.: Wspolne Centrum Badawcze Komisji Europejskiej (JRC), Environmental Assessment Agency(2012).
  8. Yun, Y. S. and Lee, S. J., "Development status of underground storage for $CO_2$ generated from cool power plants," Prospect Ind. Chem., 12(2), 9-20(2009).
  9. Caldeira, K. and Rau, G. H., "Accelerating carbonate dissolution to sequester carbon dioxide in the ocean: Geochemical implications," Geophys. Res. Lett., 27(2), 225-228(2000). https://doi.org/10.1029/1999GL002364
  10. Kim, N. J. and Kim, C. B., "Comparative study on the ocean disposal methods of carbon dioxide," Energy Eng. J., 13(4), 301-310(2004).
  11. Caldeira, K. and Wickett, M. E., "Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean," J. Geophys. Res., 110(110), C09S04 (2005).
  12. Park, Y. G., Choi, S. H., Katsumi, M., Lee, J. S., Gang, S. G. and Hwang, J. H., "Review on ocean carbon sequestration through direct injection," J. Kor. Soc. Mar. Environ. Eng., 10(2), 118-124(2007).
  13. Kim, S., Lee, J. M. and Yoon, E. S., "Reservoir modeling for carbon dioxide sequestration and enhanced oil recovery," J. Kor. Inst. Gas., 16(3), 35-41(2012). https://doi.org/10.7842/kigas.2012.16.3.035
  14. Kim, J. G., Lee, Y. S. and Lee, J. H., "Development of the efficiency-evaluation model for the mechanism of $CO_2$ sequestration in a deep saline aquifer," J. Kor. Inst. Gas., 16(6) 55-56(2012). https://doi.org/10.7842/kigas.2012.16.6.55
  15. Oikawa, K., Yongsiri, C., Takeda, K. and Harimoto, T., "Seawater flue gas desulfurization: Its technical implications and performance results," Environ. Prog., 22(1), 67-73(2004).
  16. Cui, X., "Comparison of seawater desulfurization for different capacity units in thermal power plant," Electric Power Construction/Dianli Jianshe, 32(8), 91-94(2011).
  17. Ettouney, R., Fawzi, N., El-Rifai, M. and Ettouney, H., "Flue gas desulfurization and humidification dehumidification in power plants," Desalination Water Treat., 37(1-3), 337-349(2012). https://doi.org/10.1080/19443994.2012.661290
  18. Morse, J. W. and He, S., "Influences of T, S and P$CO_2$ on the pseudo-homogeneous precipitation of $CaCO_3$ from seawater: Implications for whiting formation," Mar. Chem., 41(4), 291-297(1993). https://doi.org/10.1016/0304-4203(93)90261-L
  19. Morse, J. W., Arvidson, R. S. and Luttge, A., "Calcium carbonate formation and dissolution," Chem. Rev.-Columbus, 107(2), 342-381(2007). https://doi.org/10.1021/cr050358j
  20. Yoo, M., Han., S. J., Shin, J. Y. and Wee, J. H., "A study on carbon dioxide capture performance of KOH aqueous solution via chemical absorption," Kor. Chem. Eng. Res., 34(1), 55-62(2012). https://doi.org/10.4491/KSEE.2012.34.1.055
  21. Zeebe, R. E., "History of seawater carbonate chemistry, atmospheric $CO_2$, and ocean acidification," Annu. Rev. Earth Planet. Sci., 40, 141-165(2012). https://doi.org/10.1146/annurev-earth-042711-105521
  22. Perry, R. H. and Green, D. W., Perry's chemical engineers' handbook, McGraw-Hill New York(2008).

Cited by

  1. Carbonation of Circulating Fluidized Bed Boiler Fly Ash Using Carbonate Liquids vol.54, pp.5, 2017, https://doi.org/10.4191/kcers.2017.54.5.01