DOI QR코드

DOI QR Code

제올라이트와 활성탄을 이용한 대기 중 CO2 흡착 및 재생 특성

Ambient CO2 Adsorption and Regeneration Performance of Zeolite and Activated Carbon

  • Park, Il-Gun (Department of Environmental Engineering, Ajou University) ;
  • Hong, Min-Sun (Department of Environmental Engineering, Ajou University) ;
  • Kim, Byum-Seok (Department of Environmental Engineering, Ajou University) ;
  • Kang, Ho-Geun (Pyunghwa Engineering Technique Research Institute)
  • 투고 : 2013.03.11
  • 심사 : 2013.04.22
  • 발행 : 2013.05.30

초록

대기 중 $CO_2$ 포집 기술은 비점오염원 배출 $CO_2$를 포집할 수 있는 유일한 기술 중 하나이다. 본 논문에서는 저농도 $CO_2$를 이용한 흡착 실험을 수행하였다. 세 종류의 흡착제를 이용한 흡착과 열재생을 반복하는 실험을 수행한 결과 제올라이트 5A, 13X 그리고 활성탄의 $CO_2$ 흡착량은 21 mg/g, 12 mg/g 그리고 6 mg/g으로 나타났으며, 열재생 반복실험 결과에서 제올라이트 5A가 가장 우수한 흡착 성능을 보여주었다.

Direct Air Capture (DAC) technology using reusable energy is a plausible process to capture $CO_2$ from non-point sources. In this paper, adsorption and desorption were repeatedly tested using low concentration $CO_2$. Three types of adsorbents were examined in cyclic $CO_2$ adsorption and thermal regeneration. Adsorption capacities of zeolite 5A, zeolite 13X and activated carbon were 21 mg/g, 12 mg/g and 6 mg/g, respectively. Zeolite 5A shows the highest adsorption capacities after cyclic thermal regeneration.

키워드

참고문헌

  1. IEA, "Prospects for $CO_2$ capture and storage," Energy technology analysis, pp. 27-36(2004).
  2. U.S. National Oceanic & Atmospheric Administration (NOAA) Earth System Research Laboratory Home Page, http://www.esrl.noaa.gov(2013).
  3. Intergovernmental Panel on Climate Change (IPCC) data distribution centre Home Page, http://www.ipcc-data.org(2001).
  4. U.S. Environmental Protection Agency Home Page, http://www.epa.gov/climatechange/ghgemissions(2011).
  5. Holmes, G. and Keith, D. W., "An Air-Liquid Contactor for Large-Scale Capture of $CO_2$ from Air," Philosophical Trans. Royal Society A-Mathematical, Phys. Eng. Sci., 370, 4380-4403(2012). https://doi.org/10.1098/rsta.2012.0137
  6. Keith, D. W., Heidel, K. and Cherry, R., "Capturing $CO_2$ from the atmosphere: Rationale and Process Design Considerations. Geo-Engineering Climate Change," Cambridge University Press, pp. 107-126(2010).
  7. American Physical Society, "Direct Air Capture of $CO_2$ with chemicals," pp. 1-72(2011).
  8. Cho, Y. M., Lee, J. Y., Kwon, S. B., Park, D. S., Choi, J. S. and Lee, J. Y., "Adsorption and desorption characteristics of carbon dioxide at low concentration on Zeolite 5A and Zeolic 13X," J. Kor. Soc. Atmos. Environ., 27(2), 191-200 (2011). https://doi.org/10.5572/KOSAE.2011.27.2.191
  9. Bansal, R. C. and Goyal, M., "Activated carbon adsorption," CRC press, NW, pp. 97-112(2005).
  10. Johan, C. G., Louk, A. A. P. and Javier, P. R., "Pore size determination in modified micro and mesoporous materials- Pitfalls and limitations in gas adsorption data analysis," Micro. Mesop. Mater., 60, 1-17 (2003). https://doi.org/10.1016/S1387-1811(03)00339-1
  11. Kim, D. J., Kim, J. W. and Yie, J. E., "Temperature-programmed adsorption and characteristics of honeycomb hydrocarbon adsorbent," Ind. Eng. Chem. Res., 41(25), 6589-6592 (2002). https://doi.org/10.1021/ie020165b
  12. Han, J. U., Kim, D. J., Kang, M., Kim, J. W., Kim, J. M. and Yie, J. E., "Study of $CO_2$ adsorption characteristics on acid treated and LiOH impregnated activated carbons," J. Kor. Ind. Eng. Chem., 16(3), 312-316(2005).
  13. Deanna, M. D., Berend, S. and Jeffrey, R. L., "Carbon dioxide capture-prospects for new materials," Angew. Chem. Int. Ed., 49, 6058-6082(2010). https://doi.org/10.1002/anie.201000431
  14. ChMaria, L., Carreon, S. L. and Moises, A. C., "AIPO-18 membranes for $CO_2/CH_4$ separation," Chem. Commun., 48, 2310-2312(2012). https://doi.org/10.1039/c2cc17249f
  15. Mulloth, L. M. and Finn, J. E., "Carbon dioxide adsorption on a 5A zeolite designed for $CO_2$ removal in spacecraft cabins," NASA Ames Research Center, pp. 1-9(1998).

피인용 문헌

  1. Adsorption of CO2 on Monoethanol Amine-Impregnated ZSM5 and MS13X vol.39, pp.6, 2017, https://doi.org/10.4491/KSEE.2017.39.6.325