DOI QR코드

DOI QR Code

Photodecomposition Characteristics of Tetrabromobisphenol A (TBBPA) by Ultraviolet (UV-A) Irradiation

Ultraviolet-A (UV-A) 조사에 의한 Tetrabromobisphenol A (TBBPA)의 광분해 반응 특성

  • Jang, Seok-Won (Department of Environmental Engineering and Biotechnology, Mokpo National Maritime University) ;
  • Han, Sang-Kuk (Department of Environmental Engineering and Biotechnology, Mokpo National Maritime University)
  • 장석원 (목포해양대학교 환경.생명공학과) ;
  • 한상국 (목포해양대학교 환경.생명공학과)
  • Received : 2012.10.09
  • Accepted : 2013.02.13
  • Published : 2013.03.30

Abstract

Of all the brominated flame retardants (BFRs), TBBPA has the largest production volume (50% of the BFRs in current use). It is interest to investigate how they may degrade, because of it can pose an environmental hazard. By using UV-A (${\lambda}=352nm$ ), we have found that the UV-A irradiation increased the photodecomposition reaction rate of TBBPA in an intensity-dependent manner. We also observed 2,6-dibromo-p-benzosemiquinone radical ($a_{2H}=2.36G$, g = 2.0056) generated from TBBPA by reaction with singlet oxygen ($^1O_2$). On the other hand, when an aqueous preparation of HA was irradiated in the presence of TBBPA, the typical spectrum of semiquinone radical was detected by electron spin resonance (ESR). And then, we have found that the photodecomposition rate of TBBPA is decreased in depend on HA concentration. Radical formation and the reactive rate of TBBPA were inhibited by sodium azide used as a singlet oxygen quencher. Therefore we report that a similar $^1O_2$-induced oxidation can be initiate in aqueous solutions of TBBPA dissolved in humic acid (HA) by the UV-A irradiation (${\lambda}=352nm$). From these results, we suggest that the reaction rate of HA with $^1O_2$ is faster than that of TBBPA with $^1O_2$.

모든 브롬화난연제 중 가장 많이 사용되고 있는 것은 TBBPA이다(상용화되고 있는 브롬화난연제물질 중 50%를 차지). TBBPA는 환경 중에서 유해하기 때문에 환경 중에서의 그들의 분해반응기전에 대한 연구가 흥미롭다. 본 연구에서는 UV-A (${\lambda}=352nm$) 조사에 의한 TBBPA의 광분해반응속도가 조사세기 의존적으로 증가하였다. 또한 TBBPA의 광분해반응에 의해서 2,6-dibromo-p-benzosemiquinone radical ($a_{2H}=2.36G$, g = 2.0056)이 생성되고 그 생성반응에 singlet oxygen ($^1O_2$)이 주요 반응 인자로서 영향을 미치는 것으로 나타났다. 한편, HA와 TBBPA의 혼합용액을 광조사하면 semiquinone radical의 전형적인 ESR 스펙트럼이 생성되었다. 그리고 HA는 TBBPA의 광분해반응속도를 농도의존적으로 감소시키는 것으로 나타났다. 또한 라디칼 생성과 광분해반응속도는 singlet oxygen ($^1O_2$) 소거제인 sodium azide를 주입하면 감소되었다. 이러한 결과로부터, UV-A 조사에 의한 HA와 $^1O_2$의 반응속도는 TBBPA와 $^1O_2$의 것보다 더 빠르다는 것을 제시한다.

Keywords

References

  1. Kwon, M. H., Song, K. B., Kang, Y. R., Hwang, S. R., Shin, S. K., Kim, G. H., Park, J. S., Lee, S. Y., Kim, D. H. and Chung, G. Y., "Current status of brominated flame fetartants (BFR) and polybrominated dibenzo-p-dioxins and furans (PBDDs/PBDFs)," Anal. Sci. Technol., 21(6), 443-458 (2008).
  2. Kim, Y. B., Lee, S. H. and Chung, Y., "Monitoring of brominated flame retardants (BFRs) for the management of their contamination in environments," Environ. Impact Ass., 14(2), 83-96(2005).
  3. Jang, S. K., Shin, S. K. and Kim, J. S., "Analytical methods and characteristics of brominated flame retardants in environments," Anal. Sci. Technol., 14(5), 83A-108A(2001).
  4. Lee, M. S., Kim, H. M., Lee, C. U., Kim, S. D., Yeun, J. H., Song S. H., Lee S. H., Kim, E. J., Kim, E. K., Yang, C. Y., Choi, K. H. and Jung, Y. H., "Environmental risk assessment of brominated flame retardants: Focus on TBBPA," Report of NIER, Korea, 28, 147-162(2006).
  5. Alaee, M., Arias, P., Sjodin, A. and Bergman, A., "An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release," Environ. Int., 29, 686-689(2003).
  6. Barontini, F., Cozzani, V., Marsanich, K., Raffa, V. and Petarca, L., "An experimental investigation of tetrabromobisphenol A decomposition pathways," J. Anal. Appl. Pvrolvsis, 72, 41-53(2004). https://doi.org/10.1016/j.jaap.2004.02.003
  7. Go, B. R., "Studies on the development of analytical method for tetrabromobisphenol A in polymers by gas chromatography/ mass spectrometry," Kyung Hee University Master's degree, pp. 1-61(2006).
  8. Cynthia, A. de Wit, "An overview of brominated flame retardants in the environment," Chemosphere, 46(5), 583-624(2002). https://doi.org/10.1016/S0045-6535(01)00225-9
  9. Han, S. K., Robert, H. S., Ann, G. M., Chignell, C. F. and Bilski, P. J., "Photosensitized oxidation of tetrabromobisphenol A by humic acid in aqueous solution," Photochem. Photobiol., 85(6), 1299-1305(2009). https://doi.org/10.1111/j.1751-1097.2009.00608.x
  10. Watanabe, I. and Sakai, S. I., "Environmental release and behavior of brominated flame retardants," Environ. Int., 29, 665-682(2003). https://doi.org/10.1016/S0160-4120(03)00123-5
  11. Barontini, F., Marsanich, K., Petarca, L. and Cozzani, V., "Thermal degradation and decomposition products of electronic boards containing BFRs," Ind. Eng. Chem. Res., 44, 4186-4199(2005). https://doi.org/10.1021/ie048766l
  12. Fackler, P., "Determination of the biodegradability of tetrabromobisphenol A in soil under aerobic condition," Springborn Life Sciences, Inc. Wareham, MA(1989).
  13. Yao, Y., KaKimoto, K., Ogawa, I., Kato, Y., Hanada, Y., Shinohara, R. and Yoshino, E., "Photodechlororination pathways of non-ortho substituted PCBs by ultraviolet irradiation in alkaline 2-propanol," Bull. Environ. Contam. Toxicol., 59, 238-245(1997). https://doi.org/10.1007/s001289900470
  14. Ohko, Y., Ando, I., Niwa, C., Tatsuma, T., Yamammura, T., Nakashima, T., Kubota, Y. and Fujishima, A., "Degradation of bisphenol A in water by $TiO_2$ photocatalyst," Environ. Sci. Technol., 35, 2365-2368(2001). https://doi.org/10.1021/es001757t
  15. Polewski, K., Slowinsk, D., Slawinski, J. and Pawlak, A., "The effect of UV and visible light radiation on natural humic acid EPR spectral and kinetic studies," Geodema, 126, 291-299(2005). https://doi.org/10.1016/j.geoderma.2004.10.001
  16. Hoigne, J., Faust, B. C., Haag, W. R., Scully Jr, F. E. and Zepp, G., "Aquatic humic substances as sources and sinks of photochemically produced transient reactants," Adv. Chem. Ser., 219, 363-381(1989).
  17. Han, S. K., "A study on generative characteristics of radicals in aqueous solutions of humic acids using electron spin resonance," J. Environ. Sci., 17(6), 6671-677(2008).
  18. Kim, T. S., Lee, J. H., Kim, Y. H., Hwang, S. R., Jang, J. Y., Park, W. M., Cho, H. J., Kim, C. W., Shin, S. K., Kim, S. C. and Na, J. G., "A study on the development of analytical method for unregulated trace organic pollutants (IV)," Report of NIER, Korea, 24, 43-55(2002).
  19. Federica, B., Valerio, C., Katia, M., Vittoria, R. and Luigi, P., "An experimental investigation of tetrabromobisphenol A decomposition pathways," J. Anal. Appl. Pyrolysis, 72, 41- 53(2004). https://doi.org/10.1016/j.jaap.2004.02.003
  20. Al-Rasheed, R. and Cardin, D. J., "Photocatalytic degradation of humic acid in saline water. Part 1. Artificial seawater: influence of $TiO_2$, temperature, pH, and air-flow," Chemosphere, 51, 925-933(2003). https://doi.org/10.1016/S0045-6535(03)00097-3
  21. Yuanhong, Z., Xiaoliang, L., Yin, Z., Jianxi, Z., Sanyuan, Z., Peng Y., Hongping, H. and Jing, Z., "Heterogeneous UV/ Fenton degradation of TBBPA catalyzed by titanomagnetite: Catalyst characterization, performance and degradation products," Water Res., 46, 4633-4644(2012). https://doi.org/10.1016/j.watres.2012.06.025
  22. Eriksson, J., Rahm, S., Green, N., Bergman, Å. and Jakobsson, E., "Photochemical transformations of tetrabromobisphenol A and related phenols in water," Chemosphere, 54 (1), 117-126(2004). https://doi.org/10.1016/S0045-6535(03)00704-5
  23. Takeshita, K., Utsumi, H. and Hamada, A., "ESR measurement of radical clearance in lung of whole mouse," Biochem. Biophys. Res. Commun., 177(2), 874-880(1991). https://doi.org/10.1016/0006-291X(91)91871-9
  24. Steelink, C. and Tollin, G. B., "iological polymers related to catechol: electron paramagnetic resonance and infrared studies of melanin, tannin, lignin, humic acid and hydroxyquinones," Biochim. Biophys. Acta., 112, 337-343(1966).
  25. Boule, P., Othmen, K., Richard, C., Szczepanik, B. and Grabner, G., "Phototransformation of halogenoaromatic derivatives in aqueous solution," Int. J. Photoenergy, 1, 1-6(1999). https://doi.org/10.1155/S1110662X9900001X
  26. Reistad, T., Mariussen, E. and Fonnum, F., "The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: The Involvement of the MAP kinase pathway and protein kinase C." Toxicol. Sci., 56, 95-104(2005).
  27. Morris, S., Allchin, C. R., Zegers, B. N., Haftka, J. J. H., Boon, J. P., Belpaire, C., Leonards, P. E. G., van Leeuwen, S. P. J. and De Boer, J., "Distribution an fate of HBCD and TBBPA brominated flame retardants in north sea estuaries and aquatic food webs," Environ. Sci. Technol., 38, 5497- 5504(2004). https://doi.org/10.1021/es049640i
  28. Sandvik, S. L. H., Bilski, P., Pakulski, J. D., Chignell, C. F. and Coffin, R. B., "Photogeneration of singlet oxygen and free radicals in dissolved organic matter isolated from the Mississippi and Atchafalaya River plumes," Mar. Chem., 69, 139-152(2000). https://doi.org/10.1016/S0304-4203(99)00101-2
  29. Paul, A., Hackbarth, S., Vogt, R. D., Röder, B., Burnison, B. K. and Steinberg, C. E., "Photogeneration of singlet oxygen by humic substance: comparison of humic substances of aquatic and terrestrial origin," Photochem. Photobiol. Sci., 3, 273-280(2004). https://doi.org/10.1039/b312146a
  30. Khan, S. U. and Schnitzer, M., "UV irradiation of atrazine in aqueous fulvic acid solution," J. Environ. Sci. Health, 13 (3), 299(1978). https://doi.org/10.1080/03601237809372097