DOI QR코드

DOI QR Code

재조합 고온성 Xylose Isomerase 처리에 의한 사포닌 및 푸코이단의 암세포 생육저해 활성 비교

Comparison of Growth Inhibitory Effects on Cancer Cells of Saponin and Fucoidan Treated with Recombinant Thermophilic Xylose Isomerase

  • 이동근 (신라대학교 일반대학원 생명공학과) ;
  • 박성환 (신라대학교 일반대학원 생명공학과) ;
  • 이상현 (신라대학교 일반대학원 생명공학과)
  • Lee, Dong-Geun (Department of Bioscience and Biotechnology, Graduate School, Silla University) ;
  • Park, Seong-Hwan (Department of Bioscience and Biotechnology, Graduate School, Silla University) ;
  • Lee, Sang-Hyeon (Department of Bioscience and Biotechnology, Graduate School, Silla University)
  • 투고 : 2013.07.08
  • 심사 : 2013.07.31
  • 발행 : 2013.10.30

초록

호열성 진정세균인 Thermotoga maritima의 xylose isomerase 유전자를 대장균을 이용하여 클로닝하고 재조합 발현시켰다. 재조합 효소의 최적활성은 $90^{\circ}C$와 pH 8.0에서 관찰되었다. 사포닌을 재조합효소로 처리한 후 사람의 위암 세포주 (AGS)와 대장암 세포주 (HT-29)에 처리한 결과, 효소 무처리 사포닌에 비해 우수한 암세포 생육저해 활성을 나타냈다. 한편, 푸코이단을 재조합효소로 처리한 후 동일 세포주들에 처리한 결과, 효소 무처리 푸코이단과 비슷한 암세포 생육저해 활성을 보였다. 1 ${\mu}g/ml$ 농도의 효소 처리 사포닌은 100 ${\mu}g/ml$ 농도의 효소 무처리 사포닌과 유사하거나 우수한 암세포 생육저해 활성을 보였다. 본 연구결과는 기능성 식품이나 의약품의 개발에 참고가 될 것으로 사료된다.

The gene encoding for xylose isomerase from the thermophilic bacterium Thermotoga maritima was cloned and recombinantly expressed in E. coli cells. Optimal activity was shown at $90^{\circ}C$ and pH 8.0. Treatment of saponin by recombinant xylose isomerase increased the growth inhibitory effect against human gastric cancer (AGS) cells and human colon cancer (HT-29) cells. On the other hand, treatment of fucoidan by the enzyme could not change the growth inhibitory effect against the same cancer cells. One ${\mu}g/ml$ of enzyme-treated saponin exhibited the same or higher growth inhibitory effect against both cancer cells compared with 100 ${\mu}g/ml$ of enzymeuntreated saponin. These results would be useful in the development of functional food or drug.

키워드

참고문헌

  1. Schaeffer, D. J. and V. S. Krylov (2000) Anti-HIV activity of extracts and compounds from algae and cyanobacteria. Ecotoxicol. Environ. Saf. 45: 208-227. https://doi.org/10.1006/eesa.1999.1862
  2. Dobashi, K., T. Nishino, M. Fujihara, and T. Nagumo (1989) Isolation and preliminary characterization of fucose-containing sulfated polysaccharides with blood -anticoagulant activity from the brown seaweed Hizikia fusiforme. Carbohydr. Res. 194: 315-320. https://doi.org/10.1016/0008-6215(89)85032-3
  3. Hyun, J. H., S. C. Kim, J. I. Kang, M. K. Kim, H. J. Boo, J. M. Kwon, Y. S. Koh, J. W. Hyun, D. B. Park, E. S. Yoo, and H. K. Kang (2009) Apoptosis inducing activity of fucoidan in HCT-15 colon carcinoma cells. Biol. Pharm. Bull. 32: 1760-1764. https://doi.org/10.1248/bpb.32.1760
  4. An. I.-J., S.-D. Cho, J.-K. Kwon, H.-R. Kim, H.-J. Yu, and J.-Y. Jung (2012) The effects of fucoidan on the activation of macrophage and anticancer in gastric cancer cell. J. Fd Hyg. Safety 27: 406-414. https://doi.org/10.13103/JFHS.2012.27.4.406
  5. Ko, E. J. and H. G. Joo (2009) Immunostimulatory effects of fucoidan on mouse splenocytes. Lab. Anim. Res. 25: 195-200.
  6. Zhou, W., M. Q. Feng, J. Y. Li, and P. Zhou (2006) Studies on the preparation, crystal structure and bioactivity of ginsenoside compound K. J. Asian Nat. Prod. Res. 8: 519-527. https://doi.org/10.1080/10286020500208600
  7. Elma, Z. T., E. Z. Ilian, and J. H. Christina (1991) Effect of ginsenoside Rg1 on insulin binding in mice liver and brain membrane. Phytother. Res. 5: 46-48. https://doi.org/10.1002/ptr.2650050114
  8. Kang, S. Y., S. H. Kim, V. B. Schini, and N. D. Kim (1995) Dietary ginsenosides endothlium dependent relaxation in the thoracic arota of hydercholesterolemic rabbit. Gen. Pharmacol. 26: 483-487. https://doi.org/10.1016/0306-3623(95)94002-X
  9. Lee, K.-S., B.-J. Seong, G.-H. Kim, S.-I. Kim, S.-H. Han, H.-H. Kim, and N.-D. Baik (2010) Ginsenoside, phenolic acid composition and physiological significances of fermented ginseng leaf. J. Kor. Soc. Food Sci. Nutr. 39: 1194-1200. https://doi.org/10.3746/jkfn.2010.39.8.1194
  10. Choung, M. G. and E.-H. Sohn. (2011) Anti-tumor activity of saponin fraction of Platycodon gradiflourm through immunomodulatory effects associated with NO production in RAW264.7 cells. Kor. J. Plant Res. 24: 557-563. https://doi.org/10.7732/kjpr.2011.24.5.557
  11. Kim, Y.-C., C.-W. Cho, Y.-K. Rhee, K. M. Yoo, and J. Rho (2007) Antioxidant activity of ginseng extracts prepared by enzyme and heat treatment. J. Kor. Soc. Food Sci. Nutr. 36: 1482-1485. https://doi.org/10.3746/jkfn.2007.36.11.1482
  12. Quan, L.-H., Z. Liang, H.-B. Kim, S.-H. Kim, S.-Y. Kim, Y.-D. Noh, and D.-C. Yang (2008) Conversion of ginsenoside Rd to compound K by crude enzymes extracted from Lactobacillus brevis LH8. J. Ginseng Res. 32: 226-231. https://doi.org/10.5142/JGR.2008.32.3.226
  13. Bioproject, Thermotoga maritima MSB8. http://www.ncbi.nlm.nih.gov/bioproject/111 (2003).
  14. Madigan, M. T., J. M. Martinko, and J. Parker (2013) Biology of microorganisms. 10th ed., p. 441. Prentice Hall. London, UK.
  15. Lozada-Ramrez, J. D., A. Snchez-Ferrer, and F. Garca-Carmona (2013) Recombinant S-adenosylhomocysteine hydrolase from Thermotoga maritima: cloning, overexpression, characterization, and thermal purification studies. Appl. Biochem. Biotechnol. 170: 639-653. https://doi.org/10.1007/s12010-013-0218-y
  16. Lee, H. H. and S. T. Jung (2013) Overexpression, crystallization and preliminary X-ray crystallographic analysis of $\beta$-N-acetylglucosaminidase from Thermotoga maritima encoded by the Tm0809 gene. Acta Crystallogr. Sect. F. Struct. Biol. Cryst Commun. 1: 115-117.
  17. Ma, Y. H., D. Q. Lv, S. Zhou, D. Y. Lai, and Z. M. Chen (2013) Characterization of an aldo-keto reductase from Thermotoga maritima with high thermostability and a broad substrate spectrum. Biotechnol. Lett. 35: 757-762. https://doi.org/10.1007/s10529-013-1141-6
  18. Jokela, J., O. Pastinen, and M. Leisola (2002) Isomerization of pentose and hexose sugars by an enzyme reactor packed with cross-linked xylose isomerase crystals. Enzyme Microb. Technol. 31: 67-76.
  19. Chandrakant, P. and V. S. Bisaria (2000) Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol. Biotechnol. Bioprocess Eng. 5: 32-39. https://doi.org/10.1007/BF02932350
  20. Bucke, C. (1983) Glucose transforming enzymes. pp. 93-127. In: W. Fogarty (ed.). Microbial enzymes and biotechnology. Applied Science Publishers, London, UK.
  21. Sambrook, J., E. Fritsch, and T. Maniatis (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., pp. 23-38. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.
  22. Vieille, C., J. Hess, P. K. Kelly, and J. G. Zeikus (1995) XylA cloning and sequencing and biochemical characterization of xylose isomerase from Thermotoga neapolitana. Appl. Environ. Microbiol. 61: 1867-1875.
  23. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  24. Walfridsson, M., X. Bao, M. Anderlund, G. Lilius, L. Bulow, and B. Hahn-Hagerdal (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl. Environ. Microbiol. 62: 4648-4651.
  25. Michael, C. A., A. S. Dominic, and M. Anue (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48: 589-595.
  26. Nelson, K. E., R. A. Clayton, S. R. Gill, M. L. Gwinn, R. J. Dodson, D. H. Haft, E. K. Hickey, J. D. Peterson, W. C. Nelson, K. A. Ketchum, L. McDonald, T. R. Utterback, J. A. Malek, K. D. Linher, M. M. Garrett, A. M. Stewart, M. D. Cotton, M. S. Pratt, C. A. Phillips, D. Richardson, J. Heidelberg, G. G. Sutton, R. D. Fleischmann, J. A. Eisen, O. White, S. L. Salzberg, H. O. Smith, J. C. Venter, and C. M. Fraser (1999) Genome sequence of Thermotoga maritima: evidence for lateral gene transfer between Archaea and bacteria. Nature 399: 323-329. https://doi.org/10.1038/20601
  27. Babich, L., A. F. Hartog, L. J. van Hemert, F. P. Rutjes, and R. Wever (2012) Synthesis of carbohydrates in a continuous flow reactor by immobilized phosphatase and aldolase. ChemSusChem 5: 2348-2353. https://doi.org/10.1002/cssc.201200468
  28. Xu, J., Y. S. Tian, R. H. Peng, B. Zhu, J. J. Gao, and Q. H. Yao (2012) Characterization of a thermostable $\beta$-glucuronidase from Thermotoga maritima expressed in Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 95:1211-1219. https://doi.org/10.1007/s00253-011-3802-5
  29. Rodrigues, M. V., N. Borges, C. P. Almeida, P. Lamosa, and H. Santos (2009) A unique beta-1,2-mannosyltransferase of Thermotoga maritima that uses di-myo-inositol phosphate as the mannosyl acceptor. J. Bacteriol. 191: 6105-6115. https://doi.org/10.1128/JB.00598-09