DOI QR코드

DOI QR Code

Analysis and Enrichment of Microbial Community Showing Reducing Ability toward indigo in the Natural Fermentation of Indigo-Plant

자연발효 과정에서 인디고에 환원력을 지닌 미생물 커뮤니티 분석과 농화배양

  • Choi, Eun-Sil (Department of Biological Sciences, Chonnam National University) ;
  • Lee, Eun-Bin (Department of Biological Sciences, Chonnam National University) ;
  • Choi, Hyueong-An (Department of Biological Sciences, Chonnam National University) ;
  • Son, Kyunghee (Department of Clothing and Textiles/Human Ecology Research Institute, Chonnam National University) ;
  • Kim, Geun-Joong (Department of Biological Sciences, Chonnam National University) ;
  • Shin, Younsook (Department of Clothing and Textiles/Human Ecology Research Institute, Chonnam National University)
  • 최은실 (전남대학교 생물학과) ;
  • 이은빈 (전남대학교 생물학과) ;
  • 최형안 (전남대학교 생물학과) ;
  • 손경희 (전남대학교 의류학과/생활과학연구소) ;
  • 김근중 (전남대학교 생물학과) ;
  • 신윤숙 (전남대학교 의류학과/생활과학연구소)
  • Received : 2013.08.26
  • Accepted : 2013.10.14
  • Published : 2013.10.30

Abstract

Indigo is utilized in various industries including textile dyeing, cosmetics, printing and medicinal products and its reduced form, leuco-indigo, is mainly used in these process. Chemical reducing agent (sodium dithionite, sodium sulfide, etc.) is preferred to use for the formation of leucoindigo in industry. In traditional indigo fermentation process, microorganisms can participate in the reduction of indigo and thus it has been known to reduce environmental pollution and noxious byproducts. However, in fermentation method using microorganisms it is difficult to standardize large scale production process due to low yield and reproducibility. In this study, we attempted to develop the indigo reduction process using microbial flora which was isolated from naturally fermented indigo vat or deduced by metagenomic approach. From the results of library analyses of PCR-amplified 16S rRNA genes from the traditional indigo fermentation vat sample (metagenome), it was confirmed that Alkalibacteriums (71%) was distinctly dominant in population. Some strains were identified after confirming that they become pure culture in nutrient media modified slightly. Four strains were separated in this process and each strain showed obvious reducing ability toward indigo in dyeing test. It is expected that the analyzed results will provide important data for standardizing the natural fermentation of indigo and investigating the mechanism of indigo reduction.

Keywords

References

  1. Hunter-Cevera, J. C. (1998) The value of microbial diversity. Curr. Opin. Microbiol. 1: 278-285. https://doi.org/10.1016/S1369-5274(98)80030-1
  2. Hu, H. Y., K. Fujie, H. Nakagome, K. Urano, and A. Katayama (1999) Quantitative analyses of the change in microbial diversity in a bioreactor for wastewater treatment based on respiratory quinones. Water Res. 33: 3263-3270. https://doi.org/10.1016/S0043-1354(99)00044-5
  3. Weinbauer, M. G. and D. F. Wenderoth (2002) Microbial diversity and ecosystem functions - the unmined riches. Electro. J. Biotechnol. 5: 19-20.
  4. Kapur, M. and R. K. Jain (2004) Microbial diversity: exploring the unexplored. World Federation of Culture Collection Newsletter 39: 12-16.
  5. Satyanarayana, T., C. Raghukumar, and S. Shivaji (2005) Extremophilic microbes: Diversity and perspectives. Curr. Sci. India 89: 78-90.
  6. Lee, C. W., C. Y. Ko, and D. M. Ha (1992) Microfloral changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. 20: 102-109.
  7. Yoon, J. H., S. S. Kang, T. I. Mheen, J. S. Ahn, H. J. Lee, T. K. Kim, C. S. Park, Y. H. Kho, K. H. Kang, and Y. H. Park (2000) Lactobacillus kimchii sp nov., a new species from kimchi. Int. J. Syst. Evol. Micr. 50: 1789-1795. https://doi.org/10.1099/00207713-50-5-1789
  8. Altinoz, S. and S. Toptan (2003) Simultaneous determination of Indigotin and Ponceau-4R in food samples by using Vierordt's method, ratio spectra first order derivative and derivative UV spectrophotometry. J. Food Compos. Anal. 16: 517-530. https://doi.org/10.1016/S0889-1575(03)00022-X
  9. Buolamwini, J. K. (2000) Cell cycle molecular targets in novel anticancer drug discovery. Curr. Pharm. Design 6: 379-392. https://doi.org/10.2174/1381612003400948
  10. Hoessel, R., S. Leclerc, J. A. Endicott, M. E. M. Nobel, A. Lawrie, P. Tunnah, M. Leost, E. Damiens, D. Marie, D. Marko, E. Niederberger, W. C. Tang, G. Eisenbrand, and L. Meijer (1999) Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat. Cell Biol. 1: 60-67. https://doi.org/10.1038/9035
  11. Pawlak, K., M. Puchalska, A. Miszczak, E. Rosloniec, and M. Jarosz (2006) Blue natural organic dyestuffs - from textile dyeing to mural painting. Separation and characterization of coloring matters present in elderberry, logwood and indigo. J. Mass Spectrom. 41: 613-622. https://doi.org/10.1002/jms.1018
  12. Angelini, L. G., E. Campeol, S. Tozzi, K. G. Gilbert, D. T. Cooke, and P. John (2003) A new HPLC-ELSD method to quantify indican in Polygonum tinctorium L. and to evaluate beta-glucosidase hydrolysis of indican for indigo production. Biotechnol. Progr. 19: 1792-1797. https://doi.org/10.1021/bp0300218
  13. Kim, J. Y., J. Y. Lee, Y. S. Shin, and G. J. Kim (2009) Mining and identification of a glucosidase family enzyme with high activity toward the plant extract indican. J. Mol. Catal. B-Enzym. 57: 284-291. https://doi.org/10.1016/j.molcatb.2008.10.001
  14. Minami, Y., Y. Shigeta, U. Tokumoto, Y. Tanaka, K. Yonekura- Sakakibara, H. Oh-oka, and H. Matubara (1999) Cloning, sequencing, characterization, and expression of a beta-glucosidase cDNA from the indigo plant. Plant Sci. 142: 219-226. https://doi.org/10.1016/S0168-9452(99)00015-1
  15. Padden, A. N., V. M. Dillon, J. Edmonds, M. D. Collins, N. Alvares, and P. John (1999) An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp nov. Int. J. Systematic Bacteriol. 49: 1025-1031. https://doi.org/10.1099/00207713-49-3-1025
  16. Aino, K., T. Narihiro, K. Minamida, Y. Kamagata, K. Yoshimune, and I. Yumoto (2010) Bacterial community characterization and dynamics of indigo fermentation. Fems. Microbiol. Ecol. 74: 174-183. https://doi.org/10.1111/j.1574-6941.2010.00946.x
  17. Bechtold, T., E. Burtscher, A. Amann, and O. Bobleter (1993) Alkali-stable iron complexes as mediators for the electrochemical reduction of dispersed organic dyestuffs. J. Chem. Soc. Faraday Trans. 89: 2451-2456. https://doi.org/10.1039/ft9938902451
  18. Vuorema, A., P. John, M. Keskitalo, M. A. Kulandainathan, and F. Marken (2008) Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes Pigments 76: 542-549. https://doi.org/10.1016/j.dyepig.2006.06.044
  19. Roessler, A., O. Dossenbach, U. Meyer, W. Marte, and P. Rys (2001) Direct electrochemical reduction of indigo. Chimia 55: 879-882.
  20. Beloti, V., M. A. F. Barros, J. C. de Freitas, L. A. Nero, J. A. de Souza, E. H. W. Santana, and B. D. G. M. Franco (1999) Frequency of 2,3,5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk. Rev. Microbiol. 30: 137-140. https://doi.org/10.1590/S0001-37141999000200009
  21. Zapata, J. M., C. Salinas, A.A. Calderon, R. Munoz, and A. Ros Barcelo (1991) Reduction of 2,3,5-Triphenyltetrazolium Chloride by the Kcn-Insensitive, Salicylhydroxamic Acid-Sensitive Alternative Respiratory Pathway of Mitochondria from Cultured Grapevine Cells. Plant Cell Reports 10: 579-582.
  22. Dube, E., F. Shareck, Y. Hurtubise, C. Daneault, and M. Beauregard (2008) Homologous cloning, expression, and characterisation of a laccase from Streptomyces coelicolor and enzymatic decolourisation of an indigo dye. Appl. Microbiol. Biot. 79: 597-603. https://doi.org/10.1007/s00253-008-1475-5