DOI QR코드

DOI QR Code

Influence of the Pore Properties on Carbon Dioxide Adsorption of PAN-based Activated Carbon Nanofibers

폴리아크릴로니트릴계 활성나노탄소섬유의 기공특성이 이산화탄소 흡착에 미치는 영향

  • Lee, Dayoung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Cho, Seho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Yesol (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 이다영 (충남대학교 공과대학 정밀응용화학과) ;
  • 조세호 (충남대학교 공과대학 정밀응용화학과) ;
  • 김예솔 (충남대학교 공과대학 정밀응용화학과) ;
  • 이영석 (충남대학교 공과대학 정밀응용화학과)
  • Received : 2013.03.12
  • Accepted : 2013.05.11
  • Published : 2013.09.25

Abstract

In this study, polyacrylonitrile (PAN)-based porous carbon nanofibers were prepared from PAN polymer solution by electrospinning and KOH activation with various concentrations, and the characterization of pore structures and carbon dioxide adsorption was investigated. Manufactured PAN-based activated carbon nanofibers tend to decrease diameter and increase surface oxygen functional groups depending on the increasing concentration of KOH solution. In addition, according to the results of nitrogen adsorption for pore properties analysis, it indicated increase of the specific surface area in conformity with increasing concentration of KOH solution. Micropore volume of treated activated carbon nanofibers (ANCF) by 4 M KOH was the largest compared with other samples and mesopore volume of treated ANCF by 8 M KOH was the largest volume, respectively. The concentration of KOH effects textural and surface properties, as represented by BET and XPS, which enhance carbon dioxide adsorption capacity at 0 and $25^{\circ}C$.

Polyacrylonitrile(PAN) 고분자 용액으로부터 전기방사된 고분자 나노섬유를 다양한 농도의 KOH 용액을 이용하여 다공성 나노탄소섬유를 제조하였으며, 그에 따른 세공 구조 및 이산화탄소 흡착 특성을 평가하였다. PAN 용액으로부터 제조된 활성나노탄소섬유는 KOH 활성화 농도가 증가함에 따라 섬유 직경이 감소하였으며, 표면의 산소관능기가 증가하는 경향을 보였다. 또한 질소 흡착에 따른 세공특성을 분석한 결과 KOH 활성화 농도 증가에 따라 활성나노탄소섬유의 비표면적이 증가하고, 미세공은 4 M KOH로 활성화한 나노탄소섬유가 가장 많았으며, 중간세공은 8 M KOH로 활성화한 활성나노탄소섬유가 가장 많았다. 또한 0, $25^{\circ}C$에서 KOH 활성화제의 농도가 BET 및 XPS에서 나타난 것처럼 이산화탄소 흡착을 강화시키도록 세공 및 표면 특성에 영향을 주었다.

Keywords

References

  1. Y. S. Jo and Y. Y. Kang, J. Environ. Policy, 5, 1 (2006).
  2. B. C. Bai, S. Cho, H. R. Yu, K. K. Yi, K. D. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 776 (2013). https://doi.org/10.1016/j.jiec.2012.10.016
  3. J. Kim, S. Lee, B. C. Ku, and Y. S. Chung, Text. Sci. Eng., 48, 226 (2011).
  4. D. J. Jang and S. J. Park, Appl. Chem. Eng., 21, 396 (2010).
  5. J. G. Kim, S. C. Kang, E. J. Shin, D. Y. Kom, J. H. Lee, and Y. S. Lee, Appl. Chem. Eng., 23, 47 (2012).
  6. O. K. Park, J. H. Kim, S. Lee, J. H. Lee, Y. Chung, J. Kim, and B. C. Ku, Polymer(Korea), 35, 472 (2011).
  7. J. H. Shin, S. Y. Lim, S. K. Kim, D. H. Peck, B. R. Lee, and D. H. Jung, Korean Chem. Eng. Res., 49, 769 (2011). https://doi.org/10.9713/kcer.2011.49.6.769
  8. D. Y. Kim, Y. C. Kim, and C. Y. Kim, Polymer(Korea), 9, 518 (1958).
  9. N. Yusof and A. F. Ismail, J. Anal. Appl. Pyrol., 93, 1 (2012). https://doi.org/10.1016/j.jaap.2011.10.001
  10. X. Huang, Materials, 2, 2369 (2009). https://doi.org/10.3390/ma2042369
  11. C. L. Liu, W. S. Dong, G. P. Cao, J. R. Song, L. Liu, and Y. S. Yang, J. Electroanal. Chem., 611, 225 (2007). https://doi.org/10.1016/j.jelechem.2007.09.003
  12. M. Endo, B. J. Lee, Y. A. Kim, Y. J. Kim, H. Muramatsu, T. Yanagisawa, T. Hayashi, M. Terrones, and M. S. Dresselhaus, New J. Phys., 5, 121 (2003). https://doi.org/10.1088/1367-2630/5/1/121
  13. Y. J. Kim, Y. Horie, Y. Matsuzawa, S. Wzaki, M. Endo, and M. Dresselhaus, Carbon, 42, 2423 (2004). https://doi.org/10.1016/j.carbon.2004.04.039
  14. A. Ahmadpour and D. D. Do, Carbon, 34, 471 (1996). https://doi.org/10.1016/0008-6223(95)00204-9
  15. T. Otowa, Y. Nojima, and T. Miyazaki, Carbon, 35, 1315 (1997). https://doi.org/10.1016/S0008-6223(97)00076-6
  16. M. A. Lillo-Rdenas, D. Cazorla-Amors, and A. Linares-Solano, Carbon, 41, 267 (2003). https://doi.org/10.1016/S0008-6223(02)00279-8
  17. S. H. Yoon, S. Lim, Y. Song, Y. Ota, W. Qiao, A. Tanaka, and I. Mochida, Carbon, 42, 1723 (2004). https://doi.org/10.1016/j.carbon.2004.03.006
  18. E. Raymundo-Pinero, P. Azas, T. Cacciaguerra, D. Cazorla-Amors, A. Linares-Solano, and F. Bguin, Carbon, 43, 786 (2005). https://doi.org/10.1016/j.carbon.2004.11.005
  19. H. R. Yu, J. G. Kim, J. S. Im, T. S. Bae, and Y. S. Lee, J. Ind. Eng. Chem., 18, 674 (2012). https://doi.org/10.1016/j.jiec.2011.11.064
  20. J. W. Lim, E. Jeong, M. J. Jung, S. I. Lee, and Y. S. Lee, J. Ind. Eng. Chem., 18, 116 (2012). https://doi.org/10.1016/j.jiec.2011.11.074
  21. Z. B. Zulamita, C. M. Francisco, and M. C. Carlos, J. Power Sources, 219, 80 (2012). https://doi.org/10.1016/j.jpowsour.2012.07.036
  22. B. Lindsay, M. L. Abel, and J. F. Watts, Carbon, 45, 2433 (2007). https://doi.org/10.1016/j.carbon.2007.04.017
  23. Y. S. Lee, Y. H. Kim, J. S. Hong, J. K. Suh, and G. J. Cho, Catal. Today, 120, 420 (2007). https://doi.org/10.1016/j.cattod.2006.09.014
  24. M. J. Jung, E. Jeong, S. Cho, S. Y. Yeo, and Y. S. Lee, J. Colloid Interf. Sci., 381, 152 (2012). https://doi.org/10.1016/j.jcis.2012.05.031
  25. M. J. Jung, E. Jeong, Y. Kim, and Y. S. Lee, J. Ind. Eng. Chem., 19, 1315 (2013). https://doi.org/10.1016/j.jiec.2012.12.034
  26. J. H. Kim, J. G. Kim, I. P. Hong, and S. S. Lee, J. Korean Inst. Chem. Eng., 34, 668 (1996).
  27. H. M. Yu, Y. G. Min, G. H. Lee, J. H. Byeon, and S. J. Park, Polymer(Korea), 36, 321 (2012).
  28. Y. S. Lee, Phys. High Tech., 17&18, 18 (2004).
  29. C. G. Lee, Korean Chem. Eng. Res., 48, 140 (2010).
  30. S. Dhakal and A. K. Raut, Energy Policy, 38, 3781 (2010). https://doi.org/10.1016/j.enpol.2010.02.057
  31. Martunus M. R. Othman and W. J. N. Fernando, Micropor. Mesopor. Mat., 138, 110 (2011). https://doi.org/10.1016/j.micromeso.2010.09.023
  32. H. R. Yu, S. Cho, B. C. Bai, K. B. Yi, and Y. S. Lee, Int. J. Greenh. Gas Con., 10, 278 (2012). https://doi.org/10.1016/j.ijggc.2012.06.013
  33. M. G. Plaza, A. S. Conzlez, C. Pevida, J. J. Pis, and F. Rubiera, Appl. Energ., 99, 272 (2012). https://doi.org/10.1016/j.apenergy.2012.05.028

Cited by

  1. Preparation of novolac-type phenol-based activated carbon with a hierarchical pore structure and its electric double-layer capacitor performance vol.15, pp.3, 2014, https://doi.org/10.5714/CL.2014.15.3.192
  2. Preparation and Characterization of Coaltar Pitch-based Activated Carbon Fibers(I) -Effect of Steam Activation Temperature on Textural Properties of Activated Carbon Fibers- vol.51, pp.4, 2014, https://doi.org/10.12772/TSE.2014.51.174
  3. Modification of Polyacrylonitrile Films by Hydroxylamine and Hydrazine Treatment vol.39, pp.3, 2015, https://doi.org/10.7317/pk.2015.39.3.394
  4. Morphologies and surface properties of cellulose-based activated carbon nanoplates vol.20, pp.None, 2013, https://doi.org/10.5714/cl.2016.20.032
  5. CO2 흡착 충전제 제조를 위한 microcrystalline cellulose (MCC) 입자 표면개질연구 vol.55, pp.1, 2017, https://doi.org/10.9713/kcer.2017.55.1.60
  6. PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향 vol.29, pp.2, 2013, https://doi.org/10.14478/ace.2017.1128
  7. Electrochemical properties of KOH-activated lyocell-based carbon fibers for EDLCs vol.27, pp.None, 2013, https://doi.org/10.5714/cl.2018.27.112