DOI QR코드

DOI QR Code

Organocatalytic Synthesis of Tetrahydroquinolines from α,β-Unsaturated Ketones via 1,5-Hydride Transfer/Cyclization

  • Received : 2013.07.28
  • Accepted : 2013.08.05
  • Published : 2013.11.20

Abstract

Keywords

Experimental Section

General. All commercial reagents and solvents were used without purification. TLC analyses were carried out on precoated silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm), I2, p-anisaldehyde, ninhydrin, and phosphomolybdic acid solution as an indicator. Purification of reaction products was carried out by flash chromatography using E. Merck silica gel 60 (230-400 mesh). 1H NMR and 13C NMR spectra were recorded on a Bruker DRX 400 (400 MHz for 1H, 100 MHz for 13C) and AC 200 (200 MHz for 1H, 50 MHz for 13C). Chemical shift values (δ) are reported in ppm relative to Me4Si (0.0 ppm).

General Procedure for the Catalytic Enantioselective 1,5-Hydride Transfer/Cyclization of β-(o-(Dialkylamino)-aryl)-α,β-unsaturated Ketones 1: To a stirred solution of β-(o-(dialkylamino)aryl)-α,β-unsaturated ketone 1 (0.3 mmol) and HOTf (16 μL, 0.18 mmol) in THF (0.3 mL) was added benzyl amine (9.8 μL, 0.09 mmol). The mixture was refluxed for 10-48 h, diluted with saturated NaHCO3 solution (10 mL) and extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over MgSO4, filtered, concentrated, and purified by flash chromatography to afford tetrahydroquinoline derivatives 2.

1-(1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinolin-4-yl)-ethanone (2a): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.11 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.03-7.02 (m, 1H), 6.58 (td, J = 7.2 Hz, 0.8 Hz, 1H), 6.45-6.43 (m, 1H), 3.49 (ddd, J = 15.2 Hz, 10.8 Hz, 5.2 Hz, 1H), 3.40 (ddd, J = 10.8 Hz, 9.2 Hz, 1.6 Hz, 1H), 3.19 (ddd, J = 18.8 Hz, 9.6 Hz, 7.6 Hz, 1H), 2.90-2.87 (m, 2H), 2.49 (ddd, J = 16.4 Hz, 9.6 Hz, 6.4 Hz, 1H), 2.29 (s, 3H), 2.25-1.87 (m, 3H), 1.50-1.37 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 208.21, 143.52, 128.45, 127.70, 119.83, 115.04, 110.14, 59.23, 50.37, 46.88, 31.96, 31.75, 30.53, 23.99.

1-(2,3,4,4a,5,6-Hexahydro-1H-pyrido[1,2-a]quinolin-5-yl)ethanone (2b): Major diastereomer. 1H NMR (200 MHz, CDCl3) δ 7.10-7.00 (m, 2H), 6.61-6.40 (m, 2H), 3.45-3.38 (m, 2H), 3.19-3.10 (m, 1H), 2.90-2.80 (m, 2H), 2.50-2,45 (m, 1H), 2.29 (s, 3H), 2.25-1.30 (m, 6H); 13C NMR (50 MHz, CDCl3) δ 208.4, 143.3, 128.3, 127.5, 119.7, 115.1, 110.5, 59.3, 50.37, 49.8, 35.5, 31.9, 28.4, 26.5, 23.7.

1-(5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinolin-6-yl)ethanone (2c): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.06-7.00 (m, 2H), 6.58-6.53 (m, 2H), 3.80-3.74 (m, 2H), 3.15 (ddd, J = 15.2 Hz, 10.4 Hz, 4.8 Hz, 1H), 3.07-2.96 (m, 2H), 2.66-2.62 (m, 1H), 2.13 (s, 3H), 2.10-1.95 (m,1 H), 1.80-1.37 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 209.57, 144.01, 128.96, 127.47, 118.56, 115.32, 110.20, 58.92, 49.56, 49.23, 35.43, 28.17, 26.95, 26.69, 26.47, 25.59.

1-(3-Bromo-5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]-quinolin-6-yl)ethanone (2d): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.11-7.09 (m, 2H), 6.40-6.38 (m, 2H), 3.81-3.71 (m, 2H), 3.14 (ddd, J = 15.6 Hz, 11.6 Hz, 5.2 Hz, 1H), 3.04 (dd, J = 16.8 Hz, 3.6 Hz, 1H), 2.96 (dd, J = 16.8 Hz, 5.6 Hz, 1H), 2.65-2.62 (m, 1H), 2.13 (s, 3H), 2.07-1.95 (m, 1H), 1.80-1.30 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 208.87, 142.85, 131.35, 130.02, 120.60, 111.79, 106.90, 58.96, 49.41, 49.14, 35.39, 37.92, 26.56, 26.39, 25.72, 25.65.

1-(6,6a,7,8,9,10,11,12-Octahydro-5H-azocino[1,2-a]quinolin-6-yl)ethanone (2e): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.08-7.04 (m, 1H), 7.01-6.99 (m, 1H), 6.59-6.53 (m, 2H), 3.79-3.70 (m, 2H), 3.24 (ddd, J = 14.8 Hz, 10.8 Hz, 3.6 Hz, 1H), 3.03 (d, J = 4.8 Hz, 2H), 2.66-2.63 (m, 1H), 2.10 (s, 3H), 2.00-1.40 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 209.57, 144.12, 128.98, 127.47, 118.53, 115.26, 111.11, 59.29, 52.60, 49.57, 33.67, 28.07, 27.70, 27.28, 26.72, 26.21, 25.94.

1-(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]-quinolin-6-yl)ethanone (2f): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.13-7.09 (m, 1H), 7.07-7.05 (m, 1H), 6.77-6.75 (m, 1H), 6.68 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.71-3.65 (m, 2H), 3.23 (ddd, J = 15.2 Hz, 7.2 Hz, 4.0 Hz, 1H), 3.07 (dd, J = 18.0 Hz, 14.8 Hz, 1H), 2.77-2.69 (m, 2H), 2.26 (s, 3H), 1.92-1.41 (m, 10H), 1.35-0.80 (m, 2H), 13C NMR (100 MHz, CDCl3) δ 209.13, 144.65, 129.71, 127.16, 121.09, 116.87, 114.93, 60.44, 56.92, 48.58, 28.74, 28.04, 27.70, 27.30, 25.51, 25.11, 24.94, 24.70.

1-(3-Bromo-5,6,6a,7,8,9,10,11,12,13-decahydroazonino-[1,2-a]quinolin-6-yl)ethanone (2g): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.18-7.16 (m, 2H), 6.32-6.61 (m, 1H), 3.72-3.68 (m, 1H), 3.63 (ddd, J = 14.8 Hz, 7.6 Hz, 3.6 Hz, 1H), 3.23 (ddd, J = 15.2 Hz, 3.6 Hz, 7.2 Hz, 1H), 3.04 (dd, J = 18.0 Hz, 14.4 Hz, 1H), 2.73-2.66 (m, 2H), 2.26 (s, 3H), 1.92-1.40 (m, 10H), 1.30-1.20 (m, 1H), 1.17-0.80 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 208.49, 143.61, 131.99, 129.90, 123.19, 116.26, 108.62, 60.51, 56.89, 48.37, 28.75, 27.98, 27.53, 27.14, 25.57, 25.16, 24.92, 24.51.

1-(3-(Trifluoromethyl)-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinolin-6-yl)ethanone (2h): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.33-7.26 (m, 2H), 6.75-6.73 (m, 1H), 3.80-3.74 (m, 2H), 3.28 (ddd, J = 15.2 Hz, 7.2 Hz, 4.0 Hz, 1H), 3.09 (dd, J = 16.8 Hz, 13.6 Hz, 1H), 2.79 (dd, J = 16.8 Hz, 4.8 Hz, 1H), 2.71 (ddd, J = 13.2 Hz, 4.8 Hz, 3.2 Hz, 1H), 2.27 (s, 3H), 1.95-1.15 (m, 12H) ); 13C NMR (100 MHz, CDCl3) δ 208.23, 141.93, 126.67 (q, J = 4.0 Hz), 125.03 (q, J = 267.0 Hz), 124.35 (q, J = 4.0 Hz), 120.50, 118.02 (q, J = 32.0 Hz), 113.38, 61.06, 56.52, 48.76, 28.74, 28.47, 27.47, 26.83, 26.04, 25.62, 25.33, 24.74.

1-(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]-quinolin-6-yl)propan-1-one (2i): 2.3:1 Diastereomeric mixture. 1H NMR (400 MHz, CDCl3) δ 7.05-7.01 (m, 1H), 7.00-6.92 (m, 2H), 6.70-6.68 (m, 1H), 6.62-6.50 (m, 2H), 3.72-3.51 (m, 3H), 2.69-2.63 (m, 2H), 2.58-2.57 (m, 0.5H), 2.50-2.35 (m, 3H), 1.85-0.5 (m, 18H), 1.03 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 1.5H); 13C NMR (100 MHz, CDCl3) δ 210.89, 210.61, 143.98, 143.64, 128.64, 127.90, 126.22, 126.07, 120.17, 118.33, 115.76, 114.90, 113.85, 112.09, 59.94, 59.53, 55.85, 55.58, 53.12, 53.05, 47.82, 46.59, 33.34, 32.27, 32.13, 27.33, 26.96, 26.67, 26.28, 25.93, 25.15, 25.12, 24.47, 24.07, 23.88, 23.68, 6.84, 6.69.

1-(5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinolin-6-yl)-3-phenylpropan-1-one (2j): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.31-7.18 (m, 5H), 7.11-7.07 (m, 1H), 7.06-7.03 (m, 1H), 6.75-6.73 (m, 1H), 6.67 (td, J = 7.2 Hz, 1.2 Hz, 1H), 3.67-3.58 (m, 2H), 3.21-3.14 (m, 1H), 3.13-3.06 (m, 1H), 3.05-3.00 (m, 1H), 2.99-2.93 (m, 2H), 2.87 (t, J = 7.2 Hz, 2H), 2.75-2.65 (m, 2H), 1.90-1.19 (m, 11H), 1.03-0.97 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 210.11, 144.64, 141.10, 129.69, 128.59, 128.42, 127.13, 126.25, 121.11, 116.87, 114.96, 60.39, 56.89, 40.08, 43.02, 29.74, 27.93, 27.68, 27.29, 25.48, 25.10, 24.84, 24.58.

(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]quinolin-6-yl)(3-nitrophenyl)methanone (2k): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 8.71-8.70 (m, 1H), 8.43-8.41 (m, 1H), 8.20-8.17 (m, 1H), 7.70-7.16 (m, 1H), 7.12-7.07 (m, 1H), 6.98-6.97 (m, 1H), 6.70-6.68 (m, 1H), 6.62 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.77-3.73 (m, 1H), 3.71-3.67 (m, 1H), 3.66-3.59 (m, 1H), 3.14 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.06-2.97 (m, 2H), 1.90-1.40 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 198.53, 148.67, 144.79, 133.77, 130.09, 128.81, 127.32, 122.87, 119.46, 116.52, 113.46 (two aromatic carbons missing), 61.24, 56.57, 44.35, 32.89, 28.48, 27.18, 26.84, 25.90, 25.73, 24.93.

References

  1. Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. https://doi.org/10.1002/adsc.200303094
  2. Davies, H. M. L. Angew. Chem. Int. Ed. 2006, 45, 6422. https://doi.org/10.1002/anie.200601814
  3. Godula, K.; Sames, D. Science 2006, 312, 67. https://doi.org/10.1126/science.1114731
  4. Bergman, R. G. Nature 2007, 446, 391. https://doi.org/10.1038/446391a
  5. Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. https://doi.org/10.1039/b607547a
  6. Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. https://doi.org/10.1021/cr0509760
  7. Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654. https://doi.org/10.1002/chem.200902374
  8. Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005, 127, 12180. https://doi.org/10.1021/ja053337f
  9. Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429. https://doi.org/10.1021/ol0522283
  10. McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. https://doi.org/10.1021/ja806068h
  11. McQuaid, K. M.; Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972. https://doi.org/10.1021/ol900915p
  12. Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. https://doi.org/10.1021/ja906480w
  13. Haibach, M.; Deb, I.; De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 2100. https://doi.org/10.1021/ja110713k
  14. Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424. https://doi.org/10.1021/ja110520p
  15. Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436. https://doi.org/10.1021/ol300180w
  16. Vadola, P. A.; Carrera, I.; Sames, D. J. Org. Chem. 2012, 77, 6689. https://doi.org/10.1021/jo300635m
  17. Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl. Chem. 1972, 14, 211. https://doi.org/10.1016/S0065-2725(08)60954-X
  18. Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1990, 109, 311.
  19. Meth-Cohn, O. Adv. Heterocycl. Chem. 1996, 65, 1. https://doi.org/10.1016/S0065-2725(08)60294-9
  20. Quintela, J. M. Recent Res. Dev. Org. Chem. 2003, 7, 259.
  21. Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
  22. Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 699. https://doi.org/10.3762/bjoc.8.78
  23. Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N.; Harkema, S. J. Am. Chem. Soc. 1987, 109, 3136. https://doi.org/10.1021/ja00244a041
  24. Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 199. https://doi.org/10.1021/jo00262a043
  25. Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Van Hummel, G. J.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 209. https://doi.org/10.1021/jo00262a044
  26. Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. https://doi.org/10.1002/anie.200503866
  27. Zhang, C.; Kanta De, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416. https://doi.org/10.1021/ja077473r
  28. Barluenga, J.; Fananas-Mastral, M.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed. 2008, 47, 6594. https://doi.org/10.1002/anie.200802268
  29. Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991.
  30. Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166. https://doi.org/10.1021/ja809826a
  31. Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. https://doi.org/10.1016/j.tetlet.2009.06.007
  32. Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. https://doi.org/10.1246/cl.2009.524
  33. Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419. https://doi.org/10.1021/jo802325x
  34. Murarka, S.; Zhang, C.; Konieczynska, M. D. Org. Lett. 2009, 11, 129. https://doi.org/10.1021/ol802519r
  35. Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732. https://doi.org/10.1021/ol100316k
  36. Barton, D. H.; Nakanishi, K.; Meth-Cohn, O. Comprehensive Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1-9.
  37. Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031. https://doi.org/10.1016/S0040-4020(96)00911-8
  38. Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. https://doi.org/10.1021/ar700094b
  39. Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. https://doi.org/10.1021/ja064676r
  40. Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. https://doi.org/10.1002/anie.200600191
  41. Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. https://doi.org/10.1002/anie.200703925
  42. Wang, X. B.; Zhou, Y. G. J. Org. Chem. 2008, 73, 5640. https://doi.org/10.1021/jo800779r
  43. Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137. https://doi.org/10.1070/RC2008v077n02ABEH003749
  44. O'Byrne, A.; Evans, P. Tetrahedron 2008, 64, 8067. https://doi.org/10.1016/j.tet.2008.06.073
  45. Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. https://doi.org/10.1016/j.tet.2008.12.059
  46. Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. P. J. Am. Chem. Soc. 2009, 131, 4598. https://doi.org/10.1021/ja900806q
  47. Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. https://doi.org/10.1039/b921113f
  48. Murarka, S.; Deb, I.; Zhang, C.; Seidel. D. J. Am. Chem. Soc. 2009, 131, 13226. https://doi.org/10.1021/ja905213f
  49. Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
  50. Kwon, Y. K.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1773. https://doi.org/10.5012/bkcs.2011.32.5.1773
  51. Cao, W.; Liu, X.; Wang, W.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 600. https://doi.org/10.1021/ol1028282
  52. Zhou, G.; Liu, F.; Zhang, J.; Chem. Eur. J. 2011, 17, 3101. https://doi.org/10.1002/chem.201100019
  53. Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166. https://doi.org/10.1021/ja2014955
  54. Zhang, L.; Chen, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Asian. J. 2012, 7, 2569. https://doi.org/10.1002/asia.201200674
  55. Chen, L.; Zhang, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8894.
  56. Jiao, Z.-W.; Zhang, S.-Y.; He, C.; Tu, Y.-Q.; Wang, S.-H.; Zhang, F.-M.; Zhang, W.-Q.; Li, H. Angew. Chem., Int. Ed. 2012, 51, 8811. https://doi.org/10.1002/anie.201204274
  57. Kim, D. Y.; Huh, S. C.; Kim, M. H. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
  58. Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
  59. Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
  60. Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
  61. Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
  62. Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
  63. Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
  64. Oh, Y. Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
  65. Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
  66. Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
  67. Kang, S. H.; Kwon, B. K. Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247. https://doi.org/10.1016/j.tetlet.2011.04.084
  68. Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125.
  69. Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
  70. Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420-424.
  71. Lee, H. J. Kang, S. H.; Kim, D. Y. Synlett 2011, 1559
  72. Lee, H. J.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6984. https://doi.org/10.1016/j.tetlet.2012.10.051
  73. Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437. https://doi.org/10.1016/j.tetlet.2012.04.072
  74. Lee, H. J.; Woo, S. B.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3374. https://doi.org/10.1016/j.tetlet.2012.04.095
  75. Lee, H. J.; Kim, D. Y. Synlett 2012, 1629.
  76. Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. https://doi.org/10.1016/j.tetlet.2012.09.100
  77. Lee, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2012, 33, 3171. https://doi.org/10.5012/bkcs.2012.33.10.3171
  78. Woo, S. B.; Suh, C. W.; Koh, K. O.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3359. https://doi.org/10.1016/j.tetlet.2013.04.054
  79. Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1619. https://doi.org/10.5012/bkcs.2013.34.6.1619
  80. Suh, C. W.; Han, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1623. https://doi.org/10.5012/bkcs.2013.34.6.1623
  81. Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. https://doi.org/10.1016/j.tetlet.2013.04.132
  82. Kang, Y. K.; Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Advances 2013, 3, 1332. https://doi.org/10.1039/c2ra21945j

Cited by

  1. Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences vol.16, pp.20, 2014, https://doi.org/10.1021/ol502575f
  2. Asymmetric Synthesis of Tetrahydroquinolines via Saegusa-type Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences vol.3, pp.4, 2014, https://doi.org/10.1002/ajoc.201400022
  3. Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
  4. Synthesis of Tetrahydroquinoline Derivatives via Oxidation and 1,5-Hydride Transfer/Cyclization Cascade vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10044
  5. Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
  6. )-H Bond Activation vol.16, pp.3, 2016, https://doi.org/10.1002/tcr.201600003
  7. Organocatalysis in Inert C–H Bond Functionalization vol.117, pp.13, 2017, https://doi.org/10.1021/acs.chemrev.6b00657
  8. Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences vol.19, pp.6, 2017, https://doi.org/10.1021/acs.orglett.7b00184
  9. Enantioselective Conjugate Addition of Pyrazolones to Nitroalkenes Catalyzed by Binaphthyl-modified Squaramide Organocatalyst vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11241
  10. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11307
  11. Synthesis of Ring-fused Tetrahydroquinoline Derivatives via [1,5]-Hydride Transfer/Cyclization Sequences vol.38, pp.5, 2017, https://doi.org/10.1002/bkcs.11126
  12. -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11354
  13. )-Ones with Aryldiazo Sulfones vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11530
  14. Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives vol.18, pp.18, 2013, https://doi.org/10.1021/acs.orglett.6b02201
  15. Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H )‐ones with Aryldiazonium Salts vol.3, pp.21, 2013, https://doi.org/10.1002/slct.201801431
  16. Progress in the Chemistry of Tetrahydroquinolines vol.119, pp.8, 2013, https://doi.org/10.1021/acs.chemrev.8b00567
  17. Copper‐promoted Synthesis of β‐Selenylated Cyclopentanones via Selenylation and 1,2‐Alkyl Migration Sequences of Alkenyl Cyclobutanols vol.41, pp.3, 2020, https://doi.org/10.1002/bkcs.11967