Experimental Section
General. All commercial reagents and solvents were used without purification. TLC analyses were carried out on precoated silica gel plates with F254 indicator. Visualization was accomplished by UV light (254 nm), I2, p-anisaldehyde, ninhydrin, and phosphomolybdic acid solution as an indicator. Purification of reaction products was carried out by flash chromatography using E. Merck silica gel 60 (230-400 mesh). 1H NMR and 13C NMR spectra were recorded on a Bruker DRX 400 (400 MHz for 1H, 100 MHz for 13C) and AC 200 (200 MHz for 1H, 50 MHz for 13C). Chemical shift values (δ) are reported in ppm relative to Me4Si (0.0 ppm).
General Procedure for the Catalytic Enantioselective 1,5-Hydride Transfer/Cyclization of β-(o-(Dialkylamino)-aryl)-α,β-unsaturated Ketones 1: To a stirred solution of β-(o-(dialkylamino)aryl)-α,β-unsaturated ketone 1 (0.3 mmol) and HOTf (16 μL, 0.18 mmol) in THF (0.3 mL) was added benzyl amine (9.8 μL, 0.09 mmol). The mixture was refluxed for 10-48 h, diluted with saturated NaHCO3 solution (10 mL) and extracted with ethyl acetate (2 × 10 mL). The combined organic layers were dried over MgSO4, filtered, concentrated, and purified by flash chromatography to afford tetrahydroquinoline derivatives 2.
1-(1,2,3,3a,4,5-Hexahydropyrrolo[1,2-a]quinolin-4-yl)-ethanone (2a): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.11 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.03-7.02 (m, 1H), 6.58 (td, J = 7.2 Hz, 0.8 Hz, 1H), 6.45-6.43 (m, 1H), 3.49 (ddd, J = 15.2 Hz, 10.8 Hz, 5.2 Hz, 1H), 3.40 (ddd, J = 10.8 Hz, 9.2 Hz, 1.6 Hz, 1H), 3.19 (ddd, J = 18.8 Hz, 9.6 Hz, 7.6 Hz, 1H), 2.90-2.87 (m, 2H), 2.49 (ddd, J = 16.4 Hz, 9.6 Hz, 6.4 Hz, 1H), 2.29 (s, 3H), 2.25-1.87 (m, 3H), 1.50-1.37 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 208.21, 143.52, 128.45, 127.70, 119.83, 115.04, 110.14, 59.23, 50.37, 46.88, 31.96, 31.75, 30.53, 23.99.
1-(2,3,4,4a,5,6-Hexahydro-1H-pyrido[1,2-a]quinolin-5-yl)ethanone (2b): Major diastereomer. 1H NMR (200 MHz, CDCl3) δ 7.10-7.00 (m, 2H), 6.61-6.40 (m, 2H), 3.45-3.38 (m, 2H), 3.19-3.10 (m, 1H), 2.90-2.80 (m, 2H), 2.50-2,45 (m, 1H), 2.29 (s, 3H), 2.25-1.30 (m, 6H); 13C NMR (50 MHz, CDCl3) δ 208.4, 143.3, 128.3, 127.5, 119.7, 115.1, 110.5, 59.3, 50.37, 49.8, 35.5, 31.9, 28.4, 26.5, 23.7.
1-(5,6,6a,7,8,9,10,11-Octahydroazepino[1,2-a]quinolin-6-yl)ethanone (2c): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.06-7.00 (m, 2H), 6.58-6.53 (m, 2H), 3.80-3.74 (m, 2H), 3.15 (ddd, J = 15.2 Hz, 10.4 Hz, 4.8 Hz, 1H), 3.07-2.96 (m, 2H), 2.66-2.62 (m, 1H), 2.13 (s, 3H), 2.10-1.95 (m,1 H), 1.80-1.37 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 209.57, 144.01, 128.96, 127.47, 118.56, 115.32, 110.20, 58.92, 49.56, 49.23, 35.43, 28.17, 26.95, 26.69, 26.47, 25.59.
1-(3-Bromo-5,6,6a,7,8,9,10,11-octahydroazepino[1,2-a]-quinolin-6-yl)ethanone (2d): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.11-7.09 (m, 2H), 6.40-6.38 (m, 2H), 3.81-3.71 (m, 2H), 3.14 (ddd, J = 15.6 Hz, 11.6 Hz, 5.2 Hz, 1H), 3.04 (dd, J = 16.8 Hz, 3.6 Hz, 1H), 2.96 (dd, J = 16.8 Hz, 5.6 Hz, 1H), 2.65-2.62 (m, 1H), 2.13 (s, 3H), 2.07-1.95 (m, 1H), 1.80-1.30 (m, 7H); 13C NMR (100 MHz, CDCl3) δ 208.87, 142.85, 131.35, 130.02, 120.60, 111.79, 106.90, 58.96, 49.41, 49.14, 35.39, 37.92, 26.56, 26.39, 25.72, 25.65.
1-(6,6a,7,8,9,10,11,12-Octahydro-5H-azocino[1,2-a]quinolin-6-yl)ethanone (2e): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.08-7.04 (m, 1H), 7.01-6.99 (m, 1H), 6.59-6.53 (m, 2H), 3.79-3.70 (m, 2H), 3.24 (ddd, J = 14.8 Hz, 10.8 Hz, 3.6 Hz, 1H), 3.03 (d, J = 4.8 Hz, 2H), 2.66-2.63 (m, 1H), 2.10 (s, 3H), 2.00-1.40 (m, 10H); 13C NMR (100 MHz, CDCl3) δ 209.57, 144.12, 128.98, 127.47, 118.53, 115.26, 111.11, 59.29, 52.60, 49.57, 33.67, 28.07, 27.70, 27.28, 26.72, 26.21, 25.94.
1-(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]-quinolin-6-yl)ethanone (2f): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.13-7.09 (m, 1H), 7.07-7.05 (m, 1H), 6.77-6.75 (m, 1H), 6.68 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.71-3.65 (m, 2H), 3.23 (ddd, J = 15.2 Hz, 7.2 Hz, 4.0 Hz, 1H), 3.07 (dd, J = 18.0 Hz, 14.8 Hz, 1H), 2.77-2.69 (m, 2H), 2.26 (s, 3H), 1.92-1.41 (m, 10H), 1.35-0.80 (m, 2H), 13C NMR (100 MHz, CDCl3) δ 209.13, 144.65, 129.71, 127.16, 121.09, 116.87, 114.93, 60.44, 56.92, 48.58, 28.74, 28.04, 27.70, 27.30, 25.51, 25.11, 24.94, 24.70.
1-(3-Bromo-5,6,6a,7,8,9,10,11,12,13-decahydroazonino-[1,2-a]quinolin-6-yl)ethanone (2g): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.18-7.16 (m, 2H), 6.32-6.61 (m, 1H), 3.72-3.68 (m, 1H), 3.63 (ddd, J = 14.8 Hz, 7.6 Hz, 3.6 Hz, 1H), 3.23 (ddd, J = 15.2 Hz, 3.6 Hz, 7.2 Hz, 1H), 3.04 (dd, J = 18.0 Hz, 14.4 Hz, 1H), 2.73-2.66 (m, 2H), 2.26 (s, 3H), 1.92-1.40 (m, 10H), 1.30-1.20 (m, 1H), 1.17-0.80 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 208.49, 143.61, 131.99, 129.90, 123.19, 116.26, 108.62, 60.51, 56.89, 48.37, 28.75, 27.98, 27.53, 27.14, 25.57, 25.16, 24.92, 24.51.
1-(3-(Trifluoromethyl)-5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinolin-6-yl)ethanone (2h): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.33-7.26 (m, 2H), 6.75-6.73 (m, 1H), 3.80-3.74 (m, 2H), 3.28 (ddd, J = 15.2 Hz, 7.2 Hz, 4.0 Hz, 1H), 3.09 (dd, J = 16.8 Hz, 13.6 Hz, 1H), 2.79 (dd, J = 16.8 Hz, 4.8 Hz, 1H), 2.71 (ddd, J = 13.2 Hz, 4.8 Hz, 3.2 Hz, 1H), 2.27 (s, 3H), 1.95-1.15 (m, 12H) ); 13C NMR (100 MHz, CDCl3) δ 208.23, 141.93, 126.67 (q, J = 4.0 Hz), 125.03 (q, J = 267.0 Hz), 124.35 (q, J = 4.0 Hz), 120.50, 118.02 (q, J = 32.0 Hz), 113.38, 61.06, 56.52, 48.76, 28.74, 28.47, 27.47, 26.83, 26.04, 25.62, 25.33, 24.74.
1-(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]-quinolin-6-yl)propan-1-one (2i): 2.3:1 Diastereomeric mixture. 1H NMR (400 MHz, CDCl3) δ 7.05-7.01 (m, 1H), 7.00-6.92 (m, 2H), 6.70-6.68 (m, 1H), 6.62-6.50 (m, 2H), 3.72-3.51 (m, 3H), 2.69-2.63 (m, 2H), 2.58-2.57 (m, 0.5H), 2.50-2.35 (m, 3H), 1.85-0.5 (m, 18H), 1.03 (t, J = 7.2 Hz, 3H), 0.87 (t, J = 7.2 Hz, 1.5H); 13C NMR (100 MHz, CDCl3) δ 210.89, 210.61, 143.98, 143.64, 128.64, 127.90, 126.22, 126.07, 120.17, 118.33, 115.76, 114.90, 113.85, 112.09, 59.94, 59.53, 55.85, 55.58, 53.12, 53.05, 47.82, 46.59, 33.34, 32.27, 32.13, 27.33, 26.96, 26.67, 26.28, 25.93, 25.15, 25.12, 24.47, 24.07, 23.88, 23.68, 6.84, 6.69.
1-(5,6,6a,7,8,9,10,11,12,13-decahydroazonino[1,2-a]quinolin-6-yl)-3-phenylpropan-1-one (2j): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 7.31-7.18 (m, 5H), 7.11-7.07 (m, 1H), 7.06-7.03 (m, 1H), 6.75-6.73 (m, 1H), 6.67 (td, J = 7.2 Hz, 1.2 Hz, 1H), 3.67-3.58 (m, 2H), 3.21-3.14 (m, 1H), 3.13-3.06 (m, 1H), 3.05-3.00 (m, 1H), 2.99-2.93 (m, 2H), 2.87 (t, J = 7.2 Hz, 2H), 2.75-2.65 (m, 2H), 1.90-1.19 (m, 11H), 1.03-0.97 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 210.11, 144.64, 141.10, 129.69, 128.59, 128.42, 127.13, 126.25, 121.11, 116.87, 114.96, 60.39, 56.89, 40.08, 43.02, 29.74, 27.93, 27.68, 27.29, 25.48, 25.10, 24.84, 24.58.
(5,6,6a,7,8,9,10,11,12,13-Decahydroazonino[1,2-a]quinolin-6-yl)(3-nitrophenyl)methanone (2k): Major diastereomer. 1H NMR (400 MHz, CDCl3) δ 8.71-8.70 (m, 1H), 8.43-8.41 (m, 1H), 8.20-8.17 (m, 1H), 7.70-7.16 (m, 1H), 7.12-7.07 (m, 1H), 6.98-6.97 (m, 1H), 6.70-6.68 (m, 1H), 6.62 (td, J = 7.2 Hz, 0.8 Hz, 1H), 3.77-3.73 (m, 1H), 3.71-3.67 (m, 1H), 3.66-3.59 (m, 1H), 3.14 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 3.06-2.97 (m, 2H), 1.90-1.40 (m, 12H); 13C NMR (100 MHz, CDCl3) δ 198.53, 148.67, 144.79, 133.77, 130.09, 128.81, 127.32, 122.87, 119.46, 116.52, 113.46 (two aromatic carbons missing), 61.24, 56.57, 44.35, 32.89, 28.48, 27.18, 26.84, 25.90, 25.73, 24.93.
References
- Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077. https://doi.org/10.1002/adsc.200303094
- Davies, H. M. L. Angew. Chem. Int. Ed. 2006, 45, 6422. https://doi.org/10.1002/anie.200601814
- Godula, K.; Sames, D. Science 2006, 312, 67. https://doi.org/10.1126/science.1114731
- Bergman, R. G. Nature 2007, 446, 391. https://doi.org/10.1038/446391a
- Campos, K. R. Chem. Soc. Rev. 2007, 36, 1069. https://doi.org/10.1039/b607547a
- Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174. https://doi.org/10.1021/cr0509760
- Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin, O. Chem. Eur. J. 2010, 16, 2654. https://doi.org/10.1002/chem.200902374
- Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005, 127, 12180. https://doi.org/10.1021/ja053337f
- Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429. https://doi.org/10.1021/ol0522283
- McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. https://doi.org/10.1021/ja806068h
- McQuaid, K. M.; Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972. https://doi.org/10.1021/ol900915p
- Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525. https://doi.org/10.1021/ja906480w
- Haibach, M.; Deb, I.; De, C. K.; Seidel, D. J. Am. Chem. Soc. 2011, 133, 2100. https://doi.org/10.1021/ja110713k
- Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 2424. https://doi.org/10.1021/ja110520p
- Mori, K.; Kawasaki, T.; Akiyama, T. Org. Lett. 2012, 14, 1436. https://doi.org/10.1021/ol300180w
- Vadola, P. A.; Carrera, I.; Sames, D. J. Org. Chem. 2012, 77, 6689. https://doi.org/10.1021/jo300635m
- Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl. Chem. 1972, 14, 211. https://doi.org/10.1016/S0065-2725(08)60954-X
- Verboom, W.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas 1990, 109, 311.
- Meth-Cohn, O. Adv. Heterocycl. Chem. 1996, 65, 1. https://doi.org/10.1016/S0065-2725(08)60294-9
- Quintela, J. M. Recent Res. Dev. Org. Chem. 2003, 7, 259.
- Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2625.
- Pan, S. C. Beilstein J. Org. Chem. 2012, 8, 699. https://doi.org/10.3762/bjoc.8.78
- Nijhuis, W. H. N.; Verboom, W.; Reinhoudt, D. N.; Harkema, S. J. Am. Chem. Soc. 1987, 109, 3136. https://doi.org/10.1021/ja00244a041
- Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 199. https://doi.org/10.1021/jo00262a043
- Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Van Hummel, G. J.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 209. https://doi.org/10.1021/jo00262a044
- Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. https://doi.org/10.1002/anie.200503866
- Zhang, C.; Kanta De, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 416. https://doi.org/10.1021/ja077473r
- Barluenga, J.; Fananas-Mastral, M.; Aznar, F.; Valdes, C. Angew. Chem., Int. Ed. 2008, 47, 6594. https://doi.org/10.1002/anie.200802268
- Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991.
- Shikanai, D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166. https://doi.org/10.1021/ja809826a
- Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706. https://doi.org/10.1016/j.tetlet.2009.06.007
- Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009, 38, 524. https://doi.org/10.1246/cl.2009.524
- Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419. https://doi.org/10.1021/jo802325x
- Murarka, S.; Zhang, C.; Konieczynska, M. D. Org. Lett. 2009, 11, 129. https://doi.org/10.1021/ol802519r
- Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12, 1732. https://doi.org/10.1021/ol100316k
- Barton, D. H.; Nakanishi, K.; Meth-Cohn, O. Comprehensive Natural Products Chemistry; Elsevier: Oxford, 1999; Vol. 1-9.
- Katritzky, A. R.; Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031. https://doi.org/10.1016/S0040-4020(96)00911-8
- Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. https://doi.org/10.1021/ar700094b
- Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070. https://doi.org/10.1021/ja064676r
- Rueping, M.; Antonchick, A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. https://doi.org/10.1002/anie.200600191
- Guo, Q. S.; Du, D. M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. https://doi.org/10.1002/anie.200703925
- Wang, X. B.; Zhou, Y. G. J. Org. Chem. 2008, 73, 5640. https://doi.org/10.1021/jo800779r
- Glushkov, V. A.; Tolstikov, A. G. Russ. Chem. Rev. 2008, 77, 137. https://doi.org/10.1070/RC2008v077n02ABEH003749
- O'Byrne, A.; Evans, P. Tetrahedron 2008, 64, 8067. https://doi.org/10.1016/j.tet.2008.06.073
- Kouznetsov, V. V. Tetrahedron 2009, 65, 2721. https://doi.org/10.1016/j.tet.2008.12.059
- Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. P. J. Am. Chem. Soc. 2009, 131, 4598. https://doi.org/10.1021/ja900806q
- Bergonzini, G.; Gramigna, L.; Mazzanti, A.; Fochi, M.; Bernardi, L.; Ricci, A. Chem. Commun. 2010, 46, 327. https://doi.org/10.1039/b921113f
- Murarka, S.; Deb, I.; Zhang, C.; Seidel. D. J. Am. Chem. Soc. 2009, 131, 13226. https://doi.org/10.1021/ja905213f
- Kang, Y. K.; Kim, S. M.; Kim, D. Y. J. Am. Chem. Soc. 2010, 132, 11847. https://doi.org/10.1021/ja103786c
- Kwon, Y. K.; Kang, Y. K.; Kim, D. Y. Bull. Korean Chem. Soc. 2011, 32, 1773. https://doi.org/10.5012/bkcs.2011.32.5.1773
- Cao, W.; Liu, X.; Wang, W.; Lin, L.; Feng, X. Org. Lett. 2011, 13, 600. https://doi.org/10.1021/ol1028282
- Zhou, G.; Liu, F.; Zhang, J.; Chem. Eur. J. 2011, 17, 3101. https://doi.org/10.1002/chem.201100019
- Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am. Chem. Soc. 2011, 133, 6166. https://doi.org/10.1021/ja2014955
- Zhang, L.; Chen, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Asian. J. 2012, 7, 2569. https://doi.org/10.1002/asia.201200674
- Chen, L.; Zhang, L.; Lv, J.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 8894.
- Jiao, Z.-W.; Zhang, S.-Y.; He, C.; Tu, Y.-Q.; Wang, S.-H.; Zhang, F.-M.; Zhang, W.-Q.; Li, H. Angew. Chem., Int. Ed. 2012, 51, 8811. https://doi.org/10.1002/anie.201204274
- Kim, D. Y.; Huh, S. C.; Kim, M. H. Tetrahedron Lett. 2001, 42, 6299. https://doi.org/10.1016/S0040-4039(01)01237-0
- Kim, D. Y.; Huh, S. C. Tetrahedron 2001, 57, 8933. https://doi.org/10.1016/S0040-4020(01)00891-2
- Kang, Y. K.; Kim, D. Y. J. Org. Chem. 2009, 74, 5734. https://doi.org/10.1021/jo900880t
- Lee, J. H.; Kim, D. Y. Adv. Synth. Catal. 2009, 351, 1779. https://doi.org/10.1002/adsc.200900268
- Lee, J. H.; Kim, D. Y. Synthesis 2010, 1860.
- Kang, S. H.; Kang, Y. K.; Kim, D. Y. Tetrahedron 2009, 65, 5676. https://doi.org/10.1016/j.tet.2009.05.037
- Moon, H. W.; Cho, M. J.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4896. https://doi.org/10.1016/j.tetlet.2009.06.056
- Oh, Y. Y.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2009, 50, 4674. https://doi.org/10.1016/j.tetlet.2009.06.003
- Kwon, B. K.; Kim, S. M.; Kim, D. Y. J. Fluorine Chem. 2009, 130, 759. https://doi.org/10.1016/j.jfluchem.2009.06.002
- Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2010, 51, 2906. https://doi.org/10.1016/j.tetlet.2010.03.105
- Kang, S. H.; Kwon, B. K. Kim, D. Y. Tetrahedron Lett. 2011, 52, 3247. https://doi.org/10.1016/j.tetlet.2011.04.084
- Kang, Y. K.; Suh, K. H.; Kim, D. Y. Synlett 2011, 1125.
- Kang, Y. K.; Kim, D. Y. Tetrahedron Lett. 2011, 52, 2356. https://doi.org/10.1016/j.tetlet.2011.02.087
- Yoon, S. J.; Kang, Y. K.; Kim, D. Y. Synlett 2011, 420-424.
- Lee, H. J. Kang, S. H.; Kim, D. Y. Synlett 2011, 1559
- Lee, H. J.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6984. https://doi.org/10.1016/j.tetlet.2012.10.051
- Lee, H. J.; Kim, S. M.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3437. https://doi.org/10.1016/j.tetlet.2012.04.072
- Lee, H. J.; Woo, S. B.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 3374. https://doi.org/10.1016/j.tetlet.2012.04.095
- Lee, H. J.; Kim, D. Y. Synlett 2012, 1629.
- Moon, H. W.; Kim, D. Y. Tetrahedron Lett. 2012, 53, 6569. https://doi.org/10.1016/j.tetlet.2012.09.100
- Lee, H. J.; Kim, D. Y. Bull. Korean Chem. Soc. 2012, 33, 3171. https://doi.org/10.5012/bkcs.2012.33.10.3171
- Woo, S. B.; Suh, C. W.; Koh, K. O.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3359. https://doi.org/10.1016/j.tetlet.2013.04.054
- Lee, J. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1619. https://doi.org/10.5012/bkcs.2013.34.6.1619
- Suh, C. W.; Han, T. H.; Kim, D. Y. Bull. Korean Chem. Soc. 2013, 34, 1623. https://doi.org/10.5012/bkcs.2013.34.6.1623
- Suh, C. W.; Chang, C. W.; Choi, K. W.; Lim, Y. J.; Kim, D. Y. Tetrahedron Lett. 2013, 54, 3651. https://doi.org/10.1016/j.tetlet.2013.04.132
- Kang, Y. K.; Lee, H. J.; Moon, H. W.; Kim, D. Y. RSC Advances 2013, 3, 1332. https://doi.org/10.1039/c2ra21945j
Cited by
- Enantioselective One-Pot Synthesis of Ring-Fused Tetrahydroquinolines via Aerobic Oxidation and 1,5-Hydride Transfer/Cyclization Sequences vol.16, pp.20, 2014, https://doi.org/10.1021/ol502575f
- Asymmetric Synthesis of Tetrahydroquinolines via Saegusa-type Oxidative Enamine Catalysis/1,5-Hydride Transfer/Cyclization Sequences vol.3, pp.4, 2014, https://doi.org/10.1002/ajoc.201400022
- Thiourea-catalyzed Intramolecular Allylic Amination: Synthesis of Dihydroquinoline Derivatives vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10014
- Synthesis of Tetrahydroquinoline Derivatives via Oxidation and 1,5-Hydride Transfer/Cyclization Cascade vol.36, pp.1, 2015, https://doi.org/10.1002/bkcs.10044
- Diastereo- and Enantioselective Conjugate Addition of α-Substituted Cyanoacetates to Maleimides Catalyzed by Binaphthyl-based Thiourea vol.36, pp.9, 2015, https://doi.org/10.1002/bkcs.10439
- )-H Bond Activation vol.16, pp.3, 2016, https://doi.org/10.1002/tcr.201600003
- Organocatalysis in Inert C–H Bond Functionalization vol.117, pp.13, 2017, https://doi.org/10.1021/acs.chemrev.6b00657
- Synthesis of Ring-Fused 1-Benzazepines via [1,5]-Hydride Shift/7-Endo Cyclization Sequences vol.19, pp.6, 2017, https://doi.org/10.1021/acs.orglett.7b00184
- Enantioselective Conjugate Addition of Pyrazolones to Nitroalkenes Catalyzed by Binaphthyl-modified Squaramide Organocatalyst vol.38, pp.10, 2017, https://doi.org/10.1002/bkcs.11241
- -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.38, pp.12, 2017, https://doi.org/10.1002/bkcs.11307
- Synthesis of Ring-fused Tetrahydroquinoline Derivatives via [1,5]-Hydride Transfer/Cyclization Sequences vol.38, pp.5, 2017, https://doi.org/10.1002/bkcs.11126
- -Phenyl Tetrahydroisoquinoline with β-Keto Acids vol.39, pp.1, 2018, https://doi.org/10.1002/bkcs.11354
- )-Ones with Aryldiazo Sulfones vol.39, pp.8, 2018, https://doi.org/10.1002/bkcs.11530
- Visible Light Photoredox-Catalyzed Arylative Ring Expansion of 1-(1-Arylvinyl)cyclobutanol Derivatives vol.18, pp.18, 2013, https://doi.org/10.1021/acs.orglett.6b02201
- Visible Light Photoredox‐Catalyzed Arylation of Quinoxalin‐2(1 H )‐ones with Aryldiazonium Salts vol.3, pp.21, 2013, https://doi.org/10.1002/slct.201801431
- Progress in the Chemistry of Tetrahydroquinolines vol.119, pp.8, 2013, https://doi.org/10.1021/acs.chemrev.8b00567
- Copper‐promoted Synthesis of β‐Selenylated Cyclopentanones via Selenylation and 1,2‐Alkyl Migration Sequences of Alkenyl Cyclobutanols vol.41, pp.3, 2020, https://doi.org/10.1002/bkcs.11967