DOI QR코드

DOI QR Code

CONVERGENCE THEOREMS FOR THE HENSTOCK DELTA INTEGRAL ON TIME SCALES

  • Park, Jae Myung (Department of Mathematics Chungnam National University) ;
  • Kim, Young Kuk (Department of Mathematics Education Seowon University) ;
  • Lee, Deok Ho (Department of Mathematics Education KongJu National University) ;
  • Yoon, Ju Han (Department of Mathematics Education Chungbuk National University) ;
  • Lim, Jong Tae (Department of Mathematics Chungnam National University)
  • 투고 : 2013.09.16
  • 심사 : 2013.10.11
  • 발행 : 2013.11.15

초록

In this paper, we de ne an extension $f^*:[a,b]{\rightarrow}\mathbb{R}$ of function $f^*:[a,b]_{\mathbb{T}}{\rightarrow}\mathbb{R}$ for a time scale ${\mathbb{T}}$ and prove the convergence theorems for the Henstock delta integral on time scales.

키워드

참고문헌

  1. R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22. https://doi.org/10.1007/BF03322019
  2. S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. Vol. 16 (2006), no. 3, 77-98.
  3. G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127. https://doi.org/10.1016/S0022-247X(03)00361-5
  4. G. Sh. Guseinov and B. Kaymakcalan, Basics of Riemann delta and nabla integration on time scales, J. Difference Equations Appl. 8 (2002), 1001-1027. https://doi.org/10.1080/10236190290015272
  5. J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The Henstock and Henstock delta Integrals, J. Chungcheong Math. Soc. 26 (2013), no. 2, 291-298.
  6. J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The relation between Henstock integral and Henstock delta integral on time scales, J. Chungcheong Math. Soc. 26 (2013), no. 3, 625-630. https://doi.org/10.14403/jcms.2013.26.3.625
  7. A. Peterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178. https://doi.org/10.1016/j.jmaa.2005.10.025
  8. C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
  9. B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math. J. Vol. 18 (2008), no. 1, 1-19.