CONVERGENCE THEOREMS FOR THE HENSTOCK DELTA INTEGRAL ON TIME SCALES

Jae Myung Park*, Young Kuk Kim**, Deok Ho Lee***, Ju Han Yoon****, and Jong Tae Lim****

ABSTRACT. In this paper, we define an extension $f^*:[a,b]\to\mathbb{R}$ of a function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ for a time scale \mathbb{T} and prove the convergence theorems for the Henstock delta integral on time scales.

1. Introduction and preliminaries

The Henstock delta integral on time scales was introduced by Allan Peterson and Bevan Thompson [7].

In this paper, we investigate the convergence theorems for the Henstock delta integral on time scales.

First, we introduce some concepts related to the notion of time scales. A time scale \mathbb{T} is any closed nonempty subset of \mathbb{R} , with the topology inherited from the standard topology on the real numbers \mathbb{R} . For each $t \in \mathbb{T}$, we define the forward jump operator $\sigma(t)$ by

$$\sigma(t) = \inf\{z > t : z \in \mathbb{T}\}\$$

and the backward jump operator $\rho(t)$ by

$$\rho(t) = \sup\{z < t : z \in \mathbb{T}\}\$$

where $\inf \phi = \sup \mathbb{T}$ and $\sup \phi = \inf \mathbb{T}$.

If $\sigma(t) > t$, we say that t is right-scattered, while if $\rho(t) < t$, we say that t is left-scattered. If $\sigma(t) = t$, we say that t is right-dense, while if $\rho(t) = t$, we say that t is left-dense. The forward graininess function $\mu(t)$ is defined by $\mu(t) = \sigma(t) - t$, and the backward graininess function $\nu(t)$ is defined by $\nu(t) = t - \rho(t)$.

Received September 16, 2013; Accepted October 11, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 26A39; Secondary 26E70.

Key words and phrases: time scales, Henstock delta integral, \triangle -gauge.

Correspondence should be addressed to Young Kuk Kim, ykkim@dragon.seowon. ac.kr.

For $a, b \in \mathbb{T}$, we define the time scale interval in \mathbb{T} by

$$[a,b]_{\mathbb{T}} = \{t \in \mathbb{T} : a \le t \le b\}.$$

2. Convergence theorems for the Henstock delta integral on time scales

DEFINITION 2.1. ([6]) $\delta = (\delta_L, \delta_R)$ is a \triangle -gauge on $[a, b]_{\mathbb{T}}$ if $\delta_L(t) > 0$ on $(a, b]_{\mathbb{T}}$, $\delta_R(t) > 0$ on $[a, b)_{\mathbb{T}}$, $\delta_L(a) \geq 0$, $\delta_R(b) \geq 0$, and $\delta_R(t) \geq \mu(t)$ for each $t \in [a, b)_{\mathbb{T}}$.

DEFINITION 2.2. ([6]) A collection $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i]_{\mathbb{T}})\}_{i=1}^n$ of tagged intervals is a Henstock partition of $[a, b]_{\mathbb{T}}$ if $\bigcup_{i=1}^n [t_{i-1}, t_i]_{\mathbb{T}} = [a, b]_{\mathbb{T}}$, $[t_{i-1}, t_i]_{\mathbb{T}} \subset [\xi_i - \delta_L(\xi_i), \xi_i + \delta_R(\xi_i)]$ and $\xi_i \in [t_{i-1}, t_i]_{\mathbb{T}}$ for each $i = 1, 2, \dots, n$.

For a Henstock partition $\mathcal{P} = \{(\xi_i, [t_{i-1}, t_i])\}_{i=1}^n$, we write

$$S(f, \mathcal{P}) = \sum_{i=1}^{n} f(\xi_i)(t_i - t_{i-1}),$$

whenever $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$.

DEFINITION 2.3. ([6]). A function $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ is Henstock delta integrable (or H_{\triangle} -integrable) on $[a,b]_{\mathbb{T}}$ if there exists a number A such that for each $\epsilon>0$ there exists a \triangle -gauge δ on $[a,b]_{\mathbb{T}}$ such that

$$\left| S(f, \mathcal{D}) - A \right| < \epsilon$$

for every δ -fine Henstock partition \mathcal{D} of $[a,b]_{\mathbb{T}}$. The number A is called the H_{\triangle} -integral of f on $[a,b]_{\mathbb{T}}$, and we write $A=(H_{\triangle})\int_a^b f$.

Recall that $f:[a,b]\to\mathbb{R}$ is Henstock integrable (or H-integrable) on [a,b] if there exists a number A such that for each $\epsilon>0$ there exists a gauge $\delta:[a,b]\to\mathbb{R}^+$ on [a,b] such that

$$|S(f, \mathcal{P}) - A| < \epsilon$$

for every δ -fine Henstock partition \mathcal{P} of [a, b].

THEOREM 2.4. ([5]) A function $f:[a,b] \to \mathbb{R}$ is H-integrable on [a,b] if and only if f is H_{\triangle} -integrable on [a,b].

Let $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ be a function on $[a,b]_{\mathbb{T}}$, and let $\{(a_k,b_k)\}_{k=1}^{\infty}$ be the sequence of intervals contiguous to $[a,b]_{\mathbb{T}}$ in [a,b].

Define a function $f^*:[a,b]\to\mathbb{R}$ on [a,b] by

$$f^*(t) = \begin{cases} f(a_k) & \text{if} \quad t \in (a_k, b_k) \text{ for some } k \\ f(t) & \text{if} \quad t \in [a, b]_{\mathbb{T}} \end{cases}$$

THEOREM 2.5. ([6]) A function $f:[a,b]_{\mathbb{T}} \to \mathbb{R}$ is H_{Δ} — integrable if and only if $f^*:[a,b] \to \mathbb{R}$ is Henstock integrable. In this case,

$$(H_{\Delta}) \int_a^b f = (H) \int_a^b f^*.$$

We next verify the basic properties of the Henstock delta integral.

THEOREM 2.6. Let $f:[a,b]_{\mathbb{T}}\to\mathbb{R}$ and let $c\in[a,b]$.

- (1) If f is H_{Δ} -integrable on $[a,b]_{\mathbb{T}}$, then f is H_{Δ} -integrable on every subinterval of $[a,b]_{\mathbb{T}}$.
- (2) If f is H_{Δ} -integrable on each of the intervals $[a, c]_{\mathbb{T}}$ and $[c, b]_{\mathbb{T}}$, then f is H_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} f = (H_{\Delta}) \int_{a}^{c} f + (H_{\Delta}) \int_{c}^{b} f.$$

Proof. (1) If f is H_{Δ} -integrable on $[a,b]_{\mathbb{T}}$, then f^* is H-integrable on [a,b]. Since f^* is H-integrable on every subinterval of [a,b], f is H_{Δ} -integrable on every subinterval of $[a,b]_{\mathbb{T}}$ by Theorem 2.5.

(2) If f is H_{Δ} -integrable on each of $[a,c]_{\mathbb{T}}$ and $[c,b]_{\mathbb{T}}$, then f^* is H-integrable on each of [a,c] and [c,b]. By the property of the Henstock integral, f^* is H-integrable on [a,b] and

$$(H) \int_{a}^{b} f^{*} = (H) \int_{a}^{c} f^{*} + (H) \int_{c}^{b} f^{*}.$$

By Theorem 2.5, f is H_{Δ} -integrable on $[a, c]_{\mathbb{T}}$ and $[c, b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} f = (H_{\Delta}) \int_{a}^{c} f + (H_{\Delta}) \int_{c}^{b} f.$$

THEOREM 2.7. Let $f, g: [a,b]_{\mathbb{T}} \to \mathbb{R}$ be H_{Δ} — integrable on $[a,b]_{\mathbb{T}}$. Then $\alpha f + \beta g$ is H_{Δ} —integrable on $[a,b]_{\mathbb{T}}$ and

$$(H_{\Delta})\int_{a}^{b}(\alpha f + \beta g) = \alpha(H_{\Delta})\int_{a}^{b}f + \beta(H_{\Delta})\int_{a}^{b}g.$$

Proof. If f and g are H_{Δ} -integrable on $[a,b]_{\mathbb{T}}$, then f^* and g^* are H-integrable on [a,b]. Hence $\alpha f^*+\beta g^*$ is H-integrable on [a,b], and (H) $\int_a^b (\alpha f^* + \beta g^*) = \alpha(H) \int_a^b f + \beta(H) \int_a^b g$. By Theorem 2.5, $\alpha f + \beta g$ is H_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} (\alpha f + \beta g) = \alpha (H_{\Delta}) \int_{a}^{b} f + \beta (H_{\Delta}) \int_{a}^{b} g.$$

Definition 2.8. ([7]) A subset S of a time scale \mathbb{T} has delta measure zero if \mathcal{S} contain no right-scattered points and \mathcal{S} has Lebesgue measure zero. A property \mathcal{A} holds delta almost everywhere $(\Delta - a.e)$ on \mathbb{T} if there is a subset S of \mathbb{T} such that A holds for all $t \in \mathbb{T} - S$ and S has delta measure zero.

THEOREM 2.9. If f and g are H_{Δ} — integrable on $[a,b]_{\mathbb{T}}$ and $f(t) \leq g(t) \Delta - a.e$ on $[a,b]_{\mathbb{T}}$, then $(H_{\Delta}) \int_a^b f \leq (H_{\Delta}) \int_a^b g$.

Proof. If f and g are H_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and $f(t) \leq g(t) \Delta - a.e$ on $[a,b]_{\mathbb{T}}$, then f^* and g^* are H-integrable on [a,b] and $f^*(t) \leq g^*(t)$ a.e on [a,b]. Hence, $(H) \int_a^b f^* \leq (H) \int_a^b g^*$. By Theorem 2.5,

$$(H_{\Delta})\int_{a}^{b} f \leq (H_{\Delta})\int_{a}^{b} g.$$

Theorem 2.10. (Monotone Convergence Theorem) Let $f_n, f: [a,b]_{\mathbb{T}} \to \mathbb{R}$ and assume that

- (a) f_n is H_{Δ} -integrable for each $n \in \mathbb{N}$.
- (b) $f_n \to f \Delta a.e \text{ on } [a, b]_{\mathbb{T}}.$
- (c) $f_n \leq f_{n+1} \Delta a.e$ on $[a,b]_{\mathbb{T}}$ for each $n \in \mathbb{N}$.
- (d) $\lim_{n\to\infty} (H_{\Delta}) \int_a^b f_n = I$.

Then f is H_{Λ} -integrable on $[a,b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} f = \lim_{n \to \infty} (H_{\Delta}) \int_{a}^{b} f_{n}.$$

Proof. By Theorem 2.5, we have

- (a) f_n^* is H-integrable for each $n \in \mathbb{N}$

- (b) $f_n^* \to f^*$ a.e on [a, b](c) $f_n^* \le f_{n+1}^*$ a.e on [a, b] for each $n \in \mathbb{N}$ (d) $\lim_{n \to \infty} (H) \int_a^b f_n^* = I^*$.

By the Monotone Convergence Theorem for the Henstock integral, f^* is H-integrable on [a,b] and

$$(H)\int_{a}^{b} f^{*} = \lim_{n \to \infty} (H)\int_{a}^{b} f_{n}^{*}.$$

By Theorem 2.5, f is H_{Δ} -integrable on $[a, b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} f = \lim_{n \to \infty} (H_{\Delta}) \int_{a}^{b} f_{n}.$$

Theorem 2.11. (Dominated Convergence Theorem) Assume that

- (a) $f_n \to f \Delta a.e \text{ on } [a, b]_{\mathbb{T}}$
- (b) $g \leq f_n \leq h \Delta a.e \text{ on } [a, b]_{\mathbb{T}}$
- (c) f_n, g and h are H_{Δ} -integrable on [a, b].

Then f is H_{Δ} -integrable on $[a,b]_{\mathbb{T}}$ and

$$(H_{\Delta}) \int_{a}^{b} f = \lim_{n \to \infty} (H_{\Delta}) \int_{a}^{b} f_{n}.$$

Proof. By Theorem 2.5, we have

- (a) $f_n^* \to f^*$ a.e on [a, b](b) $g^* \le f_n^* \le h^*$ a.e on [a, b](c) f_n^*, g^* and h^* are H-integrable on [a, b].

By the Dominated Convergence Theorem for the Henstock integral, f^* is H-integrable on [a,b] and

$$(H)\int_a^b f^* = \lim_{n \to \infty} (H)\int_a^b f_n^*.$$

By theorem 2.5, f is $H_{\Delta}-$ integrable on $[a,b]_{\mathbb{T}}$ and

$$(H_{\Delta})\int_{a}^{b} f = \lim_{n \to \infty} (H_{\Delta}) \int_{a}^{b} f_{n}.$$

References

- [1] R. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1999), 3-22.
- S. Avsec, B. Bannish, B. Johnson, and S. Meckler, The Henstock-Kurzweil delta integral on unbounded time scales, PanAmerican Math. J. Vol. 16 (2006), no. 3, 77-98.

- [3] G. Sh. Guseinov, Intergration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127.
- [4] G. Sh. Guseinov and B. Kaymakcalan, *Basics of Riemann delta and nabla integration on time scales*, J. Difference Equations Appl. 8 (2002), 1001-1027.
- [5] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, *The Henstock and Henstock delta Integrals*, J. Chungcheong Math. Soc. **26** (2013), no. 2, 291-298.
- [6] J. M. Park, D. H. Lee, J. H. Yoon, and J. T. Lim, The relation between Henstock integral and Henstock delta integral on time scales, J. Chungcheong Math. Soc. 26 (2013), no. 3, 625-630.
- [7] A. Peterson and B. Thompson, Henstock-Kurzweil Delta and Nabla Integral, J. Math. Anal. Appl. 323 (2006), 162-178.
- [8] C. W. Swartz and D. S. Kurtz, Theories of Integration: The Integrals of Riemann Lebesgue, Henstock-Kurzweil, and Mcshane, World Scientific, 2004.
- [9] B. S. Thomson, Henstock Kurzweil integtals on time scales, PanAmerican Math. J. Vol. 18 (2008), no. 1, 1-19.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

**

Department of Mathematics Education Seowon University Chungju 361-742, Republic of Korea *E-mail*: ykkim@dragon.seowon.ac.kr

Department of Mathematics Education KongJu National University Kongju 314-701, Republic of Korea *E-mail*: dhlee@kongju.ac.kr

Department of Mathematics Education Chungbuk National University Chungju 360-763, Republic of Korea E-mail: yoonjh@cbnu.ac.kr

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea E-mail: ssongtae@edurang.dje.go.kr