DOI QR코드

DOI QR Code

Leading Edge Statistics of a Turbulent Premixed Flame

난류 예혼합 화염 선단부의 통계적 특성에 관한 수치적 연구

  • 권재성 (포항공과대학교 기계공학과 대학원) ;
  • 허강열 (포항공과대학교 기계공학과)
  • Received : 2013.02.28
  • Accepted : 2013.03.14
  • Published : 2013.03.31

Abstract

Leading edge statistics are obtained by direct numerical simulation(DNS) of freely propagating incompressible and stagnating compressible turbulent premixed flames. Conditional averages of velocities in terms of reaction progress variable, c, and local flame surface density, ${\sum}^{\prime}_f$, are defined and compared through the flame brush. It holds asymptotically that $<u>_f=<S_d>_f$ and $<u>_u-<u>_b=D_t/L_w$ with the characteristic length scale of $\bar{c}$ variation, $L_w$. It also holds that $<u>_b=<u>_f$ for a freely propagating flame under no mean strain rate. The turbulent burning velocity, $S_T$, is determined by the conditional statistics at the leading edge under large activation energy.

Keywords

References

  1. Y. B. Zeldovich, The Mathematical Theory of Combustion and Explosions, Consultants Bureau (1985).
  2. A. Lipatnikov, J. Chomiak, "Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations", Prog. Energy Combust. Sci., 28 (2002) 1-74. https://doi.org/10.1016/S0360-1285(01)00007-7
  3. J. F. Driscoll, "Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities", Prog. Energy Combust. Sci., 34 (2008) 91-134. https://doi.org/10.1016/j.pecs.2007.04.002
  4. B. Hakberg, A. D. Gosman, "Analytical determination of turbulent flame speed from combustion models", Proc. Combust. Inst., 20 (1985) 225-232. https://doi.org/10.1016/S0082-0784(85)80507-5
  5. J. M. Duclos, D. Veynante, T. Poinsot, "A comparison of flamelet models for premixed turbulent combustion", Combust. Flame, 95 (1993) 101-117. https://doi.org/10.1016/0010-2180(93)90055-8
  6. C. A. Catlin, M. Fairweather, S. S. Ibrahim, "Predictions of turbulent, premixed flame propagation in explosion tubes", Combust. Flame, 102 (1995) 115-128. https://doi.org/10.1016/0010-2180(94)00245-N
  7. D. Lee, K. Y. Huh, "Validation of analytical expressions for turbulent burning velocity in stagnating and freely propagating turbulent premixed flames", Combust. Flame, 159 (2012) 1576-1591. https://doi.org/10.1016/j.combustflame.2011.11.007
  8. A. Amato, M. Day, R. K. Cheng, J. Bell, T. Lieuwen, "Leading point statistics of a turbulent, Lean,$H_2$-Air flame", Spring Technical Meeting of the Central States Section of the Combustion Institute, April 22-24, 2012
  9. D. Lee, K. Y. Huh, "Statistically Steady Incompressible DNS to Validate a New Correlation for Turbulent Burning Velocity in Turbulent Premixed Combustion", Flow, Turbulence Combust., 84 (2010) 339-356. https://doi.org/10.1007/s10494-009-9221-3
  10. K. N. C. Bray, P. A. Libby, J. B. Moss, "Unified modeling approach for premixed turbulent combustion- Part I: General formulation", Combust. Flame, 61 (1985) 87-102. https://doi.org/10.1016/0010-2180(85)90075-6