DOI QR코드

DOI QR Code

금속 및 금속염계 항균제가 혼입된 항균 콘크리트 개발

Development on Antibiotic Concrete Mixed with Antibacterial Metals and Metallic Salts

  • 투고 : 2013.08.19
  • 심사 : 2013.09.13
  • 발행 : 2013.09.30

초록

하수시설 및 복개 구조물 등은 용해 시 산성으로 작용하는 황화수소에 크게 노출되어, 황산화균의 작용에 의해 강산성의 황산이온이 생성된다. 이에 따라 콘크리트의 생화학적 부식에 의한 열화가 촉진되며, 콘크리트 손상을 더욱 가속화하여 내구성이 크게 저하될 수 있다. 본 연구에서는 콘크리트에서 황산화균이 유기 생체적으로 사용하는 황화수소를 제거하기 위해, 금속의 살균성을 이용하여 금속 및 금속염 분말을 콘크리트에 혼입한 후, 황산화 억제 성능을 평가하였다. 이를 위해 중성화한 콘크리트 시편의 황산화균에 대한 항균 성능을 비교 평가하였고, 급속 염소이온 침투시험을 통해 금속 및 금속염계 항균제 첨가량에 따른 콘크리트 염화물 침투깊이 및 확산계수를 측정하였다. 또한 야외에서 폭로시킨 콘크리트 시편의 표면 상태의 생화학적 상태를 관측하여, 항균콘크리트의 성능 및 적용성을 확인하였다.

In the sewage structures and wastewater facilities, concrete is exposed to hydrogen sulfide ($H_2S$) which acts as an acid material in a solution, and a strongly acidic sulfate ion ($SO{_4}^{-2}$) is generated by a sulfuric bacteria. Hence, a degradation of concrete with biochemical corrosion would be accelerated. Finally, durability of concrete and concrete structures may be greatly reduced. In this study, in order to remove the hydrogen sulfide which is used by the sulfuric bacteria organic-biologically, the antibiotic metal and metallic salt powders were mixed to concrete, and a suppressing performance of the sulfate ion was assessed. For the sulfuric acid bacteria, a comparative evaluation of antimicrobial performance on neutralized concrete specimens were carried out, also by a rapid chloride penetration test, chloride penetration depths and diffusion coefficients were measured for antibiotic concrete in accordance with the amount of metal and metallic salt-based antibacterial agents. Eventually, by an observation of the biochemical state of the surface of concrete specimens exposed outdoors, the performance and applicability of antibiotic concrete were confirmed.

키워드

참고문헌

  1. ACI Committe 222 (1994). Corrosion of Metals in Concrete, ACI Manual of Concrete Practice, Part 1, American Concrete Institute, USA.
  2. APHA, (1995). American Water Works Association and Water Environment Federation Standard Methods for the Examination of Water and Wastewater, 19th Ed., American Public Health Association, USA.
  3. Charvin, S. (1999). Influence of Possolanic Admixtures on Concrete Pore Water pH, Chloride Diffusion and Chloride Binding, MSc. Thesis, Florida Atlantic University.
  4. Choi, H.-S., Heo, K., Lee, S.-T., Yoo, S.-W, Kwak, H.-S. (2007) "A study on antibacterial performance of antibiotics for sulfuric acid bacillus control in concrete," Proceedings of 2007 Korea Institute for Structural Maintenance Inspection [in Korean].
  5. Dhir, R.K, Jones, M.R., Ahmed, H.E.H., Senevirate, A.M.G. (1990), Rapid estimation of chloride diffusion coefficient in concrete, Magazine of Concrete Research, 42(7), 177-185. https://doi.org/10.1680/macr.1990.42.152.177
  6. Heo, K, Choi, H.-S., Lee, S.-W., An, J.-E. (2009) "A study on the evaluation of the compressive strength and the chloride diffusion coefficients of the antibiotic concrete," Proceedings of 2009 Spring Conference of Korea Concrete Institute, 433-434 [in Korean].
  7. KICT (1994), A Study on Corrosion of Sewer Pipe, Research Report, Korea Institute of Construction Technology [in Korean].
  8. Song, H.-M. (2000), A Study on Bio-chemical Corrosion of Concrete Sewer Pipe, Ph.D Thesis, Cheonbuk University [in Korean].
  9. Tang, L. (1996), Electrically accelerated methods for determining chloride diffusivity in concrete current development, Magazine of Concrete Research, 48(176), 173-179. https://doi.org/10.1680/macr.1996.48.176.173