DOI QR코드

DOI QR Code

TOTAL DOMINATIONS IN P6-FREE GRAPHS

  • Chen, Xue-Gang (Department of Mathematics North China Electric Power University) ;
  • Sohn, Moo Young (Department of Mathematics Changwon National University)
  • Received : 2012.12.24
  • Published : 2013.10.31

Abstract

In this paper, we prove that the total domination number of a $P_6$-free graph of order $n{\geq}3$ and minimum degree at least one which is not the cycle of length 6 is at most $\frac{n+1}{2}$, and the bound is sharp.

Keywords

Acknowledgement

Supported by : Changwon National University

References

  1. D. Archdeacon, J. Ellis-monagham, D. Fisher, D. Froncek, P. C. B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004), no. 3, 207-210. https://doi.org/10.1002/jgt.20000
  2. R. C. Brigham, J. R. Carrington, and R. P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000), 81-95.
  3. E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), no. 3, 211-219. https://doi.org/10.1002/net.3230100304
  4. P. Dorbec and S. Gravier, Paired-domination in $P_5$-free graphs, Graphs Combin. 24 (2008), no. 4, 303-308. https://doi.org/10.1007/s00373-008-0792-x
  5. O. Favaron and M. A. Henning, Total domination in claw-free graphs with minimum degree 2, Discrete Math. 308 (2008), no. 15, 3213-3219. https://doi.org/10.1016/j.disc.2007.06.024
  6. O. Favaron, M. A. Henning, C. M. Mynhart, and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (2000), no. 1, 9-19. https://doi.org/10.1002/(SICI)1097-0118(200005)34:1<9::AID-JGT2>3.0.CO;2-O
  7. M. A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), no. 1, 21-45. https://doi.org/10.1002/1097-0118(200009)35:1<21::AID-JGT3>3.0.CO;2-F