Commun. Korean Math. Soc. **28** (2013), No. 4, pp. 857–863 http://dx.doi.org/10.4134/CKMS.2013.28.4.857

TOTAL DOMINATIONS IN P_6 -FREE GRAPHS

Xue-gang Chen and Moo Young Sohn

ABSTRACT. In this paper, we prove that the total domination number of a P_6 -free graph of order $n \geq 3$ and minimum degree at least one which is not the cycle of length 6 is at most $\frac{n+1}{2}$, and the bound is sharp.

1. Introduction

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a total dominating set of G. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3]. For notation and graph theory terminology we in general follow [3]. Let G = (V, E) be a graph with vertex set V of order n. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by d(v), N(v) and $N[v] = N(v) \cup \{v\}$, respectively. The minimum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For any $S \subseteq V$, $N(S) = \bigcup_{v \in S} N(v)$. Let G[S] denote the graph induced by S. Let C_n , P_n and $K_{1,n-1}$ denote the cycle, the path and star of order n, respectively. A graph is P_n -free if it does not contain P_n as an induced subgraph.

Lemma 1 (Cockayne et al. [3]). If G is a connected graph of order $n \ge 3$, then $\gamma_t(G) \le \frac{2n}{3}$.

A large family of graphs attaining the bound in Lemma 1 can be established using the following transformation of a graph. The 2-corona of a graph H is the graph of order 3|V(H)| obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex disjoint as illustrated in Figure 1. The 2-corona of a connected graph has total domination number twothirds its order. The following characterization of connected graphs of order at least 3 with total domination number exactly two-thirds their order is obtained in [2].

 $\bigodot 2013$ The Korean Mathematical Society

Received December 24, 2012; Revised March 23, 2013.

²⁰¹⁰ Mathematics Subject Classification. 05C50, 05C69.

Key words and phrases. total domination numbers, P_6 -free graphs.

This work was financially supported by Changwon National University in 2011-2012.

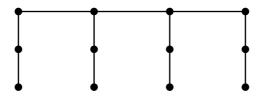


FIGURE 1. The 2-corona graph of a connected graph $H = P_4$.

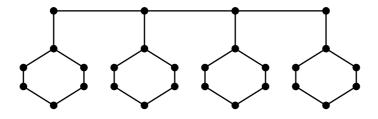


FIGURE 2. A graph in the collection \Re with underlying tree $T \approx P_4$.

Lemma 2 (Brigham et al. [2]). Let G be a connected graph of order $n \ge 3$. Then $\gamma_t(G) = \frac{2n}{3}$ if and only if G is C_3 , C_6 or the 2-corona of some connected graph.

If we restrict the minimum degree to be at least 2, then the upper bound in Lemma 1 can be improved.

Lemma 3 (Henning [7]). If G is a connected graph of order n with $\delta(G) \geq 2$ and $G \notin \{C_3, C_5, C_6, C_{10}\}$, then $\gamma_t(G) \leq \frac{4n}{7}$.

Let \Re be the collection of graphs that can be obtained from a nontrivial tree T as follows. For each vertex v of T, add a 6-cycle C_v and join v to one vertex of C_v as shown in Figure 2. Let H_1 be the graph obtained from a 6-cycle by adding a new vertex and joining this vertex to two vertices at distance 2 apart on the cycle as depicted in Figure 3. The following characterization of those graphs of order n, which are edge-minimal with respect to satisfying Gconnected, $\delta(G) \geq 2$ and $\gamma_t(G) \geq \frac{4n}{7}$, that is, $\frac{4n}{7}$ -minimal graphs, is obtained in [7].

Lemma 4 (Henning [7]). A graph G is a $\frac{4}{7}$ -minimal graph if and only if $G \in \Re \cup \{C_3, C_5, C_5, C_7, C_{10}, C_{14}, H_1\}$.

Favaron et al. [6] conjectured that for any connected graph of order n with $\delta(G) \geq 3$, $\gamma_t(G) \leq \frac{n}{2}$. Archdeacon et al. [1] recently found an elegant one-page proof of this conjecture.

FIGURE 3. A graph H_1 .

Lemma 5 ([1]). If G is a connected graph of order n with $\delta(G) \geq 3$, then $\gamma_t(G) \leq \frac{n}{2}$.

In 2008, Favaron et al. [5] gave an upper bound on total domination number in a claw-free graph.

Lemma 6 ([5]). If G is a connected claw-free graph of order n and $\delta(G) \ge 2$, then $\gamma_t(G) \le \frac{n+2}{2}$.

Obviously, if G is a 2-corona graph or $G \in \Re$, then G contains an induced P_6 . In this paper, we consider connected P_6 -free graph. We show that every connected P_6 -free graph G of order $n \geq 3$ with minimum degree at least one and $G \neq C_6$ satisfies $\gamma_t(G) \leq \frac{n+1}{2}$, and the bound is sharp.

2. Main results

Lemma 7. Let G be a connected graph of order $n \ge 3$. If G is P_4 -free, then $\gamma_t(G) = 2$.

Proof. Since G is connected and P_4 -free, it follows that its complement \overline{G} is not connected. So, $\gamma_t(G) \leq 2$. Hence, $\gamma_t(G) = 2$.

Theorem 1. Let G be a connected graph of order $n \ge 3$. If G is P_5 -free, then $\gamma_t(G) \le \frac{n+1}{2}$.

Proof. We will prove the inequality by induction on the order n of the graph. If G is P_4 -free, by Lemma 7, we have $\gamma_t(G) = 2$. Since $2 \leq \frac{n+1}{2}$, the bound holds. This establishes the base cases for the graph contains no induced P_5 . Suppose we now have a connected P_5 -free graph G of order $n \geq 4$, and the desired result is true for any connected P_5 -free graph of order less than n.

Case 1. G contains no induced subgraph C_5 . Suppose that G contains an induced subgraph $P_4 : u_0, u_1, u_2, u_3$. Let $V_p = V(P_4)$, $A = N(V_p) \setminus V_p$, $B = V \setminus (A \cup V_p)$ and $C = N(B) \setminus B$. Then $C \subseteq A$. If $A = \emptyset$, then $G = P_4$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is P_5 free and contains no induced subgraph C_5 , it follows that $\{u_1, u_2\}$ dominates A. If $B = \emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

If $G[B \cup C]$ is not connected, then there is an induced P_5 -path in the subgraph induced by the vertices of $B \cup C \cup V_p$, which is a contradiction. Hence, $G[B \cup C]$ is connected. Let $G' = G[B \cup C]$. If |n(G')| = 2, it is obvious that the result holds. If $|n(G')| \ge 3$, by induction, there exists a total dominating set S' of G'such that $|S'| \le \frac{n(G')+1}{2} \le \frac{n-3}{2}$. Then $S' \cup \{u_1, u_2\}$ is a total dominating set of G. So, $\gamma_t(G) \le |S' \cup \{u_1, u_2\}| = |S'| + 2 \le \frac{n-3}{2} + 2 = \frac{n+1}{2}$.

Case 2. G contains an induced subgraph C_5 . Choose an induced subgraph $C_5 : u_0, u_1, u_2, u_3, u_4, u_0$. Let $V_c = V(C_5), A = N(V_c) \setminus V_c, B = V \setminus (A \cup V_c)$ and $C = N(B) \setminus B$. If $A = \emptyset$, then $G = C_5$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is P_5 -free, it follows that $\{u_1, u_2, u_3\}$ dominates A. If $B = \emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

By a method similar to the proof of Case 1, we can see that $G[B \cup C]$ is connected. For any $0 \leq i \leq 4$, let $R_i = A \setminus N(\{u_{i\oplus 2}, u_{i\oplus 3}\})$, where \oplus is the addition modulo 5. For any $x \in A$, $|N(x) \cap V_c| \geq 2$. Otherwise, if x is adjacent to exactly one vertex in V_c , say u_i , then $G[\{x, u_i, u_{i\oplus 1}, u_{i\oplus 2}, u_{i\oplus 3}\}] =$ P_5 , contradicting the assumption that G is P_5 -free. For any $x \in R_i$, it is easy to prove that $x \in N(u_{i\oplus 1}) \cap N(u_{i\oplus 4})$, where $0 \leq i \leq 4$. Hence, $R_i \cap R_j = \emptyset$ for any $0 \leq i < j \leq 4$. For any $i, R_i \cap C = \emptyset$. Otherwise, say $x \in R_i \cap C$ and $y \in N(x) \cap B$, then $G[\{y, x, u_{i\oplus 1}, u_{i\oplus 2}, u_{i\oplus 3}\}] = P_5$, contradicting the assumption that G is P_5 -free.

Case 2.1. For any $i, R_i \neq \emptyset$. Let $G' = G[B \cup C]$. Since all the R_i are not empty and disjoint, $n(G') \leq n - 10$. If n(G') = 2, it is obvious that the result holds. If $n(G') \geq 3$, let S' be a minimum total dominating set of G'. By induction, $|S'| \leq \frac{n(G')+1}{2}$. Since $S' \cup \{u_1, u_2, u_3\}$ is a total dominating set of G, it follows that $\gamma_t(G) \leq |S' \cup \{u_1, u_2, u_3\}| = |S'| + 3 \leq \frac{n-9}{2} + 3 \leq \frac{n+1}{2}$.

Case 2.2. There exists an *i* such that $R_i = \emptyset$, say $R_0 = \emptyset$. Then $\{u_2, u_3\}$ dominates *A*. Suppose that $u_0 \in N(C)$. Let $G' = G[B \cup C \cup \{u_0\}]$. Let S' be a γ_t -set of G'. By induction, $|S'| \leq \frac{n(G')+1}{2}$. Then $S' \cup \{u_2, u_3\}$ is a total dominating set of *G*. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3\}| = |S'| + 2 \leq \frac{n-4+1}{2} + 2 \leq \frac{n+1}{2}$. Suppose that $u_0 \notin N(C)$. If $|A \setminus C| \geq 1$, let $G' = G[B \cup C]$. If n(G') = 2, it

Suppose that $u_0 \notin N(C)$. If $|A \setminus C| \ge 1$, let $G' = G[B \cup C]$. If n(G') = 2, it is obvious that the result holds. So we can assume that $n(G') \ge 3$. Let S' be a γ_t -set of G'. By induction, $|S'| \le \frac{n(G')+1}{2} \le \frac{n-5}{2}$. Since $S' \cup \{u_1, u_2, u_3\}$ is a total dominating set of G, $\gamma_t(G) \le |S' \cup \{u_1, u_2, u_3\}| = |S'| + 3 \le \frac{n+1}{2}$.

Suppose that A = C. Say $u_2 \in N(A)$. Let $G' = G[B \cup C \cup \{u_2\}]$. Let S' be a γ_t -set of G'. By induction, $|S'| \leq \frac{n-4+1}{2}$. Then $\gamma_t(G) \leq |S' \cup \{u_0, u_4\}| \leq \frac{n+1}{2}$.

Theorem 2. Let G be a connected P_6 -free graph of order $n \ge 3$. If G is not C_6 , then $\gamma_t(G) \le \frac{n+1}{2}$, and this bound is sharp.

Proof. We will prove the inequality by induction on the order n of the graph. If G is P_5 -free, by Theorem 1, the result holds. This establishes the base cases for the graph contains no induced subgraph P_6 . Suppose G is a connected P_6 -free graph of order $n \ge 5$ and $G \ne C_6$, and the desired result is true for any connected P_6 -free graph of order less than n, except C_6 . **Case 1.** G contains no induced subgraph C_6 . Suppose that G contains an induced subgraph $P_5 : u_0, u_1, u_2, u_3, u_4$. Let $V_p = V(P_5)$, $A = N(V_p) \setminus V_p$, $B = V \setminus (A \cup V_p)$ and $C = N(B) \setminus B$. If $A = \emptyset$, then $G = P_5$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is P_6 -free and contains no induced subgraph C_6 , it follows that $\{u_1, u_2, u_3\}$ dominates A. If $B = \emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

Case 1.1. $G[B \cup C]$ is not connected. Then C dominates B. Otherwise, there is an induced P_6 in the subgraph induced by the vertices $V_p \cup B \cup C$, which is a contradiction. Choose the minimum cardinality subset D of C such that D dominates B. Then $|D| \leq \frac{|C|+|B|}{2} \leq \frac{|A|+|B|}{2} \leq \frac{n-5}{2}$. Since $D \cup \{u_1, u_2, u_3\}$ is a total dominating set of G, it follows that $\gamma_t(G) \leq |D \cup \{u_1, u_2, u_3\}| = |D|+3 \leq \frac{n-5}{2} + 3 = \frac{n+1}{2}$.

 $\frac{n-5}{2} + 3 = \frac{n+1}{2}.$ **Case 1.2.** $G[B \cup C]$ is connected. Suppose that $A \setminus C \neq \emptyset$. Let $G' = G[B \cup C]$. If n(G') = 2, the result holds. So, we can assume that $n(G') \ge 3$. Since G' is not C_6 , by induction, there exists a total dominating set S' of G'such that $|S'| \le \frac{n(G')+1}{2} \le \frac{n-5}{2}$. Since $S' \cup \{u_1, u_2, u_3\}$ is a total dominating set of G, $\gamma_t(G) \le |S' \cup \{u_1, u_2, u_3\}| = |S'| + 3 \le \frac{n-5}{2} + 3 = \frac{n+1}{2}$. Suppose that A = C. If $u_0 \in N(A)$, let $G' = G[A \cup B \cup \{u_0\}]$. Since G'

Suppose that A = C. If $u_0 \in N(A)$, let $G' = G[A \cup B \cup \{u_0\}]$. Since G' is not C_6 , by induction, there exists a total dominating set S' of G' such that $|S'| \leq \frac{n(G')+1}{2} \leq \frac{n-3}{2}$. Then $S' \cup \{u_2, u_3\}$ is a total dominating set of G. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3\}| = |S'| + 2 \leq \frac{n-3}{2} + 2 = \frac{n+1}{2}$. Let $u_0 \notin N(A)$. Similarly, we can assume that $u_4 \notin N(A)$. That is $d(u_0) = d(u_4) = 1$. If A dominates B, choose the minimum cardinality subset D of A such that D dominates B. Then $|D| \leq \frac{|A|+|B|}{2} \leq \frac{n-5}{2}$. Since $D \cup \{u_1, u_2, u_3\}$ is a total dominating set of G, it follows that $\gamma_t(G) \leq |D \cup \{u_1, u_2, u_3\}| = |D| + 3 \leq \frac{n-5}{2} + 3 = \frac{n+1}{2}$. If A does not dominate B, then $N(u_1) \cap A \neq \emptyset$ and $N(u_3) \cap A \neq \emptyset$. Let $G' = G[V \setminus \{u_2\}]$. Then G' is a connected P_6 -free graph. By induction, there exists a total dominating set of G, $\gamma_t(G) \leq |S'| \leq \frac{n}{2}$.

Case 2. G contains an induced subgraph C_6 . Let $u_0, u_1, \ldots, u_5, u_0$ be an induced subgraph C_6 . Let $V_c = V(C_6)$, $A = N(V_c) \setminus V_c$, $B = V \setminus (A \cup V_c)$ and $C = N(B) \setminus B$. Since $G \neq C_6$, $A \neq \emptyset$. It is obvious that $\{u_1, u_2, u_3, u_4\}$ dominates A. If $B = \emptyset$, the result holds. So we can assume that $B \neq \emptyset$.

Case 2.1. $G[B \cup C]$ is not connected. Then C dominates B. Otherwise, there exists an induced P_6 in G, which is a contradiction. Choose the minimum cardinality subset D of C such that D dominates B. Then $|D| \leq \frac{|C|+|B|}{2} \leq \frac{|A|+|B|}{2}$. If $|D| < \frac{|A|+|B|}{2}$, since $D \cup \{u_1, u_2, u_3, u_4\}$ is a total dominating set of G, it follows that $\gamma_t(G) \leq |D \cup \{u_1, u_2, u_3, u_4\}| = |D| + 4 < \frac{n-6}{2} + 4 = \frac{n+2}{2}$. That is $\gamma_t(G) \leq \frac{n+1}{2}$. If $|D| = \frac{|A|+|B|}{2}$, |A| = |C|. Say $u_0 \in N(A)$. Then $D \cup \{u_2, u_3, u_4\}$ is a total dominating set of G. It follows that $\gamma_t(G) \leq |D \cup \{u_2, u_3, u_4\}| = |D| + 3 \leq \frac{n-5}{2} + 3 = \frac{n+1}{2}$.

Case 2.2. $G[B \cup C]$ is connected. For any $0 \le i \le 5$, we define the set $R_i = A \setminus N(\{u_{i\oplus 2}, u_{i\oplus 3}, u_{i\oplus 4}\})$, where \oplus is the addition modulo 6. For any $x \in A$, $|N(x) \cap V_c| \ge 2$. For any $x \in R_i$, it is easy to prove that $x \in N(u_{i\oplus 1}) \cap N(u_{i\oplus 5})$ for $0 \le i \le 5$. Then $R_i \cap R_j = \emptyset$ for any $0 \le i < j \le 5$. For any $i, R_i \cap C = \emptyset$. Otherwise, say $x \in R_i \cap C$ and $y \in N(x) \cap B$, then $G[\{y, x, u_{i\oplus 1}, u_{i\oplus 2}, u_{i\oplus 3}, u_{i\oplus 4}\}] = P_6$, contradicting the assumption that G is P_6 -free.

Case 2.2.1. For any $i, R_i \neq \emptyset$. Let $G' = G[B \cup C]$. Since all the R_i are not empty and disjoint, $n(G') \leq n - 12$. If n(G') = 2, the result holds. So, we can assume that $n(G') \geq 3$. Let S' be a minimum total dominating set of G'. Then $S' \cup \{u_1, u_2, u_3, u_4\}$ is a total dominating set of G. If G' is not C_6 , by induction, we have $|S'| \leq \frac{n(G')+1}{2}$. So, $\gamma_t(G) \leq |S' \cup \{u_1, u_2, u_3, u_4\}| = |S'| + 4 \leq \frac{n+11}{2} + 4 \leq \frac{n+1}{2}$. If G' is $C_6, |S'| \leq 4$. Since $n \geq 18, \gamma_t(G) \leq |S' \cup \{u_1, u_2, u_3, u_4\}| \leq |S' \cup \{u_1, u_2, u_3, u_4\}| \leq 8 \leq \frac{n+1}{2}$.

Case 2.2.2. There exists *i* such that $R_i = \emptyset$, say $R_0 = \emptyset$. Then $\{u_2, u_3, u_4\}$ dominates *A*. Suppose that $u_0 \in N(C)$. Assume $A \setminus C \neq \emptyset$. Let $G' = G[B \cup C \cup \{u_0\}]$. Then $n(G') \leq n - 6$ Let *S'* be a γ_t -set of *G'*. Then $S' \cup \{u_2, u_3, u_4\}$ is a total dominating set of *G*. If *G'* is not C_6 , by induction, $|S'| \leq \frac{n(G')+1}{2}$. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3, u_4\}| = |S'| + 3 \leq \frac{n-6+1}{2} + 3 \leq \frac{n+1}{2}$. If *G'* is C_6 , then $n \geq 12$. Let $G' = C_6 : u_0, v_1, \ldots, v_5, u_0$. Then $v_1, v_5 \in A$. Since v_5 is dominated by $\{u_2, u_3, u_4\}$, it follows that $\{u_2, u_3, u_4, v_1, v_2, v_3\}$ is a total dominating set of *G*. So, $\gamma_t(G) \leq 6 \leq \frac{n+1}{2}$. Suppose that A = C. Let $G' = G[B \cup C \cup \{u_0, u_5\}]$. Then n(G') = n - 4. Let *S'* be a γ_t -set of *G'*. Then $S' \cup \{u_2, u_3\}$ is a total dominating set of *G*. If *G'* is not C_6 , by induction, $|S'| \leq \frac{n(G')+1}{2}$. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3\}| = |S'| + 2 \leq \frac{n-4+1}{2} + 2 \leq \frac{n+1}{2}$. If *G'* is C_6 , then n = 10. Let $G' = C_6 : u_0, v_1, \ldots, v_4, u_5, u_0$. Then $\{v_1, v_2, u_2, u_3, u_4\}$ is a total dominating set of *G*. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3\}| = |S'| + 2 \leq \frac{n-4+1}{2} + 2 \leq \frac{n+1}{2}$. If *G'* is a total dominating set of *G*. So, $\gamma_t(G) \leq |S' \cup \{u_2, u_3\}| = |S'| + 2 \leq \frac{n-4+1}{2} + 2 \leq \frac{n+1}{2}$.

Suppose that $u_0 \notin N(C)$. If $|A \setminus C| \geq 2$, let $G' = G[B \cup C]$. If n(G') = 2, the result holds. So we can assume that $n(G') \geq 3$. Let S' be a γ_t -set of G'. Then $S' \cup \{u_1, u_2, u_3, u_4\}$ is a total dominating set of G. If G' is not C_6 , by induction, $|S'| \leq \frac{n(G')+1}{2} \leq \frac{n-7}{2}$. So, $\gamma_t(G) \leq |S' \cup \{u_1, u_2, u_3, u_4\}| = |S'| + 4 \leq \frac{n+1}{2}$. If G' is C_6 , then $n \geq 14$. Let $G' = C_6 : v_1, \ldots, v_6, v_1$. Say $v_6 \in C$. Then $\{v_2, v_3, v_4, u_1, u_2, u_3, u_4\}$ is a total dominating set of G. So, $\gamma_t(G) \leq 7 \leq \frac{n+1}{2}$.

Suppose that $|A \setminus C| = 1$, say $v \in A \setminus C$. If $u_1 \in N(C)$, let $G' = G[\tilde{B} \cup C \cup \{u_0, u_1, u_5\}]$. Let S' be a γ_t -set of G'. If G' is not C_6 , by induction, $|S'| \leq \frac{n-4+1}{2}$. Then $\gamma_t(G) \leq |S'| + 2 \leq \frac{n+1}{2}$. If G' is the graph C_6 , then n = 10. It is easy to prove that $\gamma_t(G) \leq 5 \leq \frac{n+1}{2}$. Hence, we can assume that $u_1 \notin N(C)$. Then $u_2 \in N(C)$. Otherwise, $G[B \cup C \cup V_c]$ contains a P_6 , which is a contradiction. By a similar way, if $u_2 \in N(C)$, the result holds.

Suppose that A = C. Without loss of generality, we can assume that $u_2 \in N(C)$. Let $G' = G[B \cup C \cup \{u_1, u_2\}]$. Let S' be a γ_t -set of G'. If G' is not C_6 , by

862

induction, $|S'| \leq \frac{n(G')+1}{2} \leq \frac{n-3}{2}$. So, $\gamma_t(G) \leq |S' \cup \{u_4, u_5\}| = |S'| + 2 \leq \frac{n+1}{2}$. If G' is C_6 , then n = 10. It is easy to prove that $\gamma_t(G) \leq 5 \leq \frac{n+1}{2}$.

It remains to establish that the bound is sharp. Let G obtained from a star $K_{1,r}$ by subdividing each edge exactly one time. Then n(G) = 2r + 1. It is obvious that $\gamma_t(G) = r + 1 = \frac{n(G)+1}{2}$.

References

- D. Archdeacon, J. Ellis-monagham, D. Fisher, D. Froncek, P. C. B. Lam, S. Seager, B. Wei, and R. Yuster, *Some remarks on domination*, J. Graph Theory 46 (2004), no. 3, 207–210.
- [2] R. C. Brigham, J. R. Carrington, and R. P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000), 81–95.
- [3] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, *Total domination in graphs*, Networks 10 (1980), no. 3, 211–219.
- [4] P. Dorbec and S. Gravier, Paired-domination in P₅-free graphs, Graphs Combin. 24 (2008), no. 4, 303–308.
- [5] O. Favaron and M. A. Henning, Total domination in claw-free graphs with minimum degree 2, Discrete Math. 308 (2008), no. 15, 3213–3219.
- [6] O. Favaron, M. A. Henning, C. M. Mynhart, and J. Puech, *Total domination in graphs with minimum degree three*, J. Graph Theory **34** (2000), no. 1, 9–19.
- [7] M. A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), no. 1, 21–45.

XUE-GANG CHEN DEPARTMENT OF MATHEMATICS NORTH CHINA ELECTRIC POWER UNIVERSITY BEIJING 102206, P. R. CHINA *E-mail address:* gxcxdm@163.com

Moo Young Sohn Department of Mathematics Changwon National University Changwon 641-773, Korea *E-mail address*: mysohn@changwon.ac.kr