TOTAL DOMINATIONS IN $\boldsymbol{P}_{\mathbf{6}}$-FREE GRAPHS

Xue-gang Chen and Moo Young Sohn

Abstract

In this paper, we prove that the total domination number of a P_{6}-free graph of order $n \geq 3$ and minimum degree at least one which is not the cycle of length 6 is at most $\frac{n+1}{2}$, and the bound is sharp.

1. Introduction

A total dominating set of a graph G with no isolated vertex is a set S of vertices of G such that every vertex is adjacent to a vertex in S. The total domination number of G, denoted by $\gamma_{t}(G)$, is the minimum cardinality of a total dominating set of G. Total domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [3]. For notation and graph theory terminology we in general follow [3]. Let $G=(V, E)$ be a graph with vertex set V of order n. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d(v), N(v)$ and $N[v]=N(v) \cup\{v\}$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. For any $S \subseteq V, N(S)=\bigcup_{v \in S} N(v)$. Let $G[S]$ denote the graph induced by S. Let C_{n}, P_{n} and $K_{1, n-1}$ denote the cycle, the path and star of order n, respectively. A graph is P_{n}-free if it does not contain P_{n} as an induced subgraph.
Lemma 1 (Cockayne et al. [3]). If G is a connected graph of order $n \geq 3$, then $\gamma_{t}(G) \leq \frac{2 n}{3}$.

A large family of graphs attaining the bound in Lemma 1 can be established using the following transformation of a graph. The 2 -corona of a graph H is the graph of order $3|V(H)|$ obtained from H by attaching a path of length 2 to each vertex of H so that the resulting paths are vertex disjoint as illustrated in Figure 1. The 2-corona of a connected graph has total domination number twothirds its order. The following characterization of connected graphs of order at least 3 with total domination number exactly two-thirds their order is obtained in [2].

[^0]

Figure 1. The 2-corona graph of a connected graph $H=P_{4}$.

Figure 2. A graph in the collection \Re with underlying tree $T \approx P_{4}$.

Lemma 2 (Brigham et al. [2]). Let G be a connected graph of order $n \geq 3$. Then $\gamma_{t}(G)=\frac{2 n}{3}$ if and only if G is C_{3}, C_{6} or the 2 -corona of some connected graph.

If we restrict the minimum degree to be at least 2 , then the upper bound in Lemma 1 can be improved.

Lemma 3 (Henning [7]). If G is a connected graph of order n with $\delta(G) \geq 2$ and $G \notin\left\{C_{3}, C_{5}, C_{6}, C_{10}\right\}$, then $\gamma_{t}(G) \leq \frac{4 n}{7}$.

Let \Re be the collection of graphs that can be obtained from a nontrivial tree T as follows. For each vertex v of T, add a 6 -cycle C_{v} and join v to one vertex of C_{v} as shown in Figure 2. Let H_{1} be the graph obtained from a 6-cycle by adding a new vertex and joining this vertex to two vertices at distance 2 apart on the cycle as depicted in Figure 3. The following characterization of those graphs of order n, which are edge-minimal with respect to satisfying G connected, $\delta(G) \geq 2$ and $\gamma_{t}(G) \geq \frac{4 n}{7}$, that is, $\frac{4 n}{7}$-minimal graphs, is obtained in [7].

Lemma 4 (Henning [7]). A graph G is a $\frac{4}{7}$-minimal graph if and only if $G \in$ $\Re \cup\left\{C_{3}, C_{5}, C_{5}, C_{7}, C_{10}, C_{14}, H_{1}\right\}$.

Favaron et al. [6] conjectured that for any connected graph of order n with $\delta(G) \geq 3, \gamma_{t}(G) \leq \frac{n}{2}$. Archdeacon et al. [1] recently found an elegant one-page proof of this conjecture.

Figure 3. A graph H_{1}.

Lemma 5 ([1]). If G is a connected graph of order n with $\delta(G) \geq 3$, then $\gamma_{t}(G) \leq \frac{n}{2}$.

In 2008, Favaron et al. [5] gave an upper bound on total domination number in a claw-free graph.

Lemma 6 ([5]). If G is a connected claw-free graph of order n and $\delta(G) \geq 2$, then $\gamma_{t}(G) \leq \frac{n+2}{2}$.

Obviously, if G is a 2 -corona graph or $G \in \Re$, then G contains an induced P_{6}. In this paper, we consider connected P_{6}-free graph. We show that every connected P_{6}-free graph G of order $n \geq 3$ with minimum degree at least one and $G \neq C_{6}$ satisfies $\gamma_{t}(G) \leq \frac{n+1}{2}$, and the bound is sharp.

2. Main results

Lemma 7. Let G be a connected graph of order $n \geq 3$. If G is P_{4}-free, then $\gamma_{t}(G)=2$.

Proof. Since G is connected and P_{4}-free, it follows that its complement \bar{G} is not connected. So, $\gamma_{t}(G) \leq 2$. Hence, $\gamma_{t}(G)=2$.

Theorem 1. Let G be a connected graph of order $n \geq 3$. If G is P_{5}-free, then $\gamma_{t}(G) \leq \frac{n+1}{2}$.
Proof. We will prove the inequality by induction on the order n of the graph. If G is P_{4}-free, by Lemma 7, we have $\gamma_{t}(G)=2$. Since $2 \leq \frac{n+1}{2}$, the bound holds. This establishes the base cases for the graph contains no induced P_{5}. Suppose we now have a connected P_{5}-free graph G of order $n \geq 4$, and the desired result is true for any connected P_{5}-free graph of order less than n.

Case 1. G contains no induced subgraph C_{5}. Suppose that G contains an induced subgraph $P_{4}: u_{0}, u_{1}, u_{2}, u_{3}$. Let $V_{p}=V\left(P_{4}\right), A=N\left(V_{p}\right) \backslash V_{p}$, $B=V \backslash\left(A \cup V_{p}\right)$ and $C=N(B) \backslash B$. Then $C \subseteq A$. If $A=\emptyset$, then $G=P_{4}$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is $P_{5^{-}}$ free and contains no induced subgraph C_{5}, it follows that $\left\{u_{1}, u_{2}\right\}$ dominates A. If $B=\emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

If $G[B \cup C]$ is not connected, then there is an induced P_{5}-path in the subgraph induced by the vertices of $B \cup C \cup V_{p}$, which is a contradiction. Hence, $G[B \cup C]$
is connected. Let $G^{\prime}=G[B \cup C]$. If $\left|n\left(G^{\prime}\right)\right|=2$, it is obvious that the result holds. If $\left|n\left(G^{\prime}\right)\right| \geq 3$, by induction, there exists a total dominating set S^{\prime} of G^{\prime} such that $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-3}{2}$. Then $S^{\prime} \cup\left\{u_{1}, u_{2}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}\right\}\right|=\left|S^{\prime}\right|+2 \leq \frac{n-3}{2}+2=\frac{n+1}{2}$.

Case 2. G contains an induced subgraph C_{5}. Choose an induced subgraph $C_{5}: u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{0}$. Let $V_{c}=V\left(C_{5}\right), A=N\left(V_{c}\right) \backslash V_{c}, B=V \backslash\left(A \cup V_{c}\right)$ and $C=N(B) \backslash B$. If $A=\emptyset$, then $G=C_{5}$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is P_{5}-free, it follows that $\left\{u_{1}, u_{2}, u_{3}\right\}$ dominates A. If $B=\emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

By a method similar to the proof of Case 1 , we can see that $G[B \cup C]$ is connected. For any $0 \leq i \leq 4$, let $R_{i}=A \backslash N\left(\left\{u_{i \oplus 2}, u_{i \oplus 3}\right\}\right)$, where \oplus is the addition modulo 5 . For any $x \in A,\left|N(x) \cap V_{c}\right| \geq 2$. Otherwise, if x is adjacent to exactly one vertex in V_{c}, say u_{i}, then $G\left[\left\{x, u_{i}, u_{i \oplus 1}, u_{i \oplus 2}, u_{i \oplus 3}\right\}\right]=$ P_{5}, contradicting the assumption that G is P_{5}-free. For any $x \in R_{i}$, it is easy to prove that $x \in N\left(u_{i \oplus 1}\right) \cap N\left(u_{i \oplus 4}\right)$, where $0 \leq i \leq 4$. Hence, $R_{i} \cap R_{j}=\emptyset$ for any $0 \leq i<j \leq 4$. For any $i, R_{i} \cap C=\emptyset$. Otherwise, say $x \in R_{i} \cap C$ and $y \in N(x) \cap B$, then $G\left[\left\{y, x, u_{i \oplus 1}, u_{i \oplus 2}, u_{i \oplus 3}\right\}\right]=P_{5}$, contradicting the assumption that G is P_{5}-free.

Case 2.1. For any $i, R_{i} \neq \emptyset$. Let $G^{\prime}=G[B \cup C]$. Since all the R_{i} are not empty and disjoint, $n\left(G^{\prime}\right) \leq n-10$. If $n\left(G^{\prime}\right)=2$, it is obvious that the result holds. If $n\left(G^{\prime}\right) \geq 3$, let S^{\prime} be a minimum total dominating set of G^{\prime}. By induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2}$. Since $S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a total dominating set of G, it follows that $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+3 \leq \frac{n-9}{2}+3 \leq \frac{n+1}{2}$.

Case 2.2. There exists an i such that $R_{i}=\emptyset$, say $R_{0}=\emptyset$. Then $\left\{u_{2}, u_{3}\right\}$ dominates A. Suppose that $u_{0} \in N(C)$. Let $G^{\prime}=G\left[B \cup C \cup\left\{u_{0}\right\}\right]$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. By induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2}$. Then $S^{\prime} \cup\left\{u_{2}, u_{3}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+2 \leq \frac{n-4+1}{2}+2 \leq \frac{n+1}{2}$.

Suppose that $u_{0} \notin N(C)$. If $|A \backslash C| \geq 1$, let $G^{\prime}=G[B \cup C]$. If $n\left(G^{\prime}\right)=2$, it is obvious that the result holds. So we can assume that $n\left(G^{\prime}\right) \geq 3$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. By induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-5}{2}$. Since $S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a total dominating set of $G, \gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+3 \leq \frac{n+1}{2}$.

Suppose that $A=C$. Say $u_{2} \in N(A)$. Let $G^{\prime}=G\left[B \cup C \cup\left\{u_{2}\right\}\right]$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. By induction, $\left|S^{\prime}\right| \leq \frac{n-4+1}{2}$. Then $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{0}, u_{4}\right\}\right| \leq$ $\frac{n+1}{2}$.

Theorem 2. Let G be a connected P_{6}-free graph of order $n \geq 3$. If G is not C_{6}, then $\gamma_{t}(G) \leq \frac{n+1}{2}$, and this bound is sharp.

Proof. We will prove the inequality by induction on the order n of the graph. If G is P_{5}-free, by Theorem 1, the result holds. This establishes the base cases for the graph contains no induced subgraph P_{6}. Suppose G is a connected P_{6}-free graph of order $n \geq 5$ and $G \neq C_{6}$, and the desired result is true for any connected P_{6}-free graph of order less than n, except C_{6}.

Case 1. G contains no induced subgraph C_{6}. Suppose that G contains an induced subgraph $P_{5}: u_{0}, u_{1}, u_{2}, u_{3}, u_{4}$. Let $V_{p}=V\left(P_{5}\right), A=N\left(V_{p}\right) \backslash V_{p}$, $B=V \backslash\left(A \cup V_{p}\right)$ and $C=N(B) \backslash B$. If $A=\emptyset$, then $G=P_{5}$. It is obvious that the result holds. So, we can assume that $A \neq \emptyset$. Since G is P_{6}-free and contains no induced subgraph C_{6}, it follows that $\left\{u_{1}, u_{2}, u_{3}\right\}$ dominates A. If $B=\emptyset$, then the result holds. So we can assume that $B \neq \emptyset$.

Case 1.1. $G[B \cup C]$ is not connected. Then C dominates B. Otherwise, there is an induced P_{6} in the subgraph induced by the vertices $V_{p} \cup B \cup C$, which is a contradiction. Choose the minimum cardinality subset D of C such that D dominates B. Then $|D| \leq \frac{|C|+|B|}{2} \leq \frac{|A|+|B|}{2} \leq \frac{n-5}{2}$. Since $D \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a total dominating set of G, it follows that $\gamma_{t}(G) \leq\left|D \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right|=|D|+3 \leq$ $\frac{n-5}{2}+3=\frac{n+1}{2}$.

Case 1.2. $G[B \cup C]$ is connected. Suppose that $A \backslash C \neq \emptyset$. Let $G^{\prime}=$ $G[B \cup C]$. If $n\left(G^{\prime}\right)=2$, the result holds. So, we can assume that $n\left(G^{\prime}\right) \geq 3$. Since G^{\prime} is not C_{6}, by induction, there exists a total dominating set S^{\prime} of G^{\prime} such that $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-5}{2}$. Since $S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a total dominating set of $G, \gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+3 \leq \frac{n-5}{2}+3=\frac{n+1}{2}$.

Suppose that $A=C$. If $u_{0} \in N(A)$, let $G^{\prime}=G\left[A \cup B \cup^{2}\left\{u_{0}\right\}\right]$. Since G^{\prime} is not C_{6}, by induction, there exists a total dominating set S^{\prime} of G^{\prime} such that $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-3}{2}$. Then $S^{\prime} \cup\left\{u_{2}, u_{3}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+2 \leq \frac{n-3}{2}+2=\frac{n+1}{2}$. Let $u_{0} \notin N(A)$. Similarly, we can assume that $u_{4} \notin N(A)$. That is $d\left(u_{0}\right)=d\left(u_{4}\right)=1$. If A dominates B, choose the minimum cardinality subset D of A such that D dominates B. Then $|D| \leq \frac{|A|+|B|}{2} \leq \frac{n-5}{2}$. Since $D \cup\left\{u_{1}, u_{2}, u_{3}\right\}$ is a total dominating set of G, it follows that $\gamma_{t}(G) \leq\left|D \cup\left\{u_{1}, u_{2}, u_{3}\right\}\right|=|D|+3 \leq \frac{n-5}{2}+3=\frac{n+1}{2}$. If A does not dominate B, then $N\left(u_{1}\right) \cap A \neq \emptyset$ and $N\left(u_{3}\right) \cap A \neq \emptyset$. Let $G^{\prime}=G\left[V \backslash\left\{u_{2}\right\}\right]$. Then G^{\prime} is a connected P_{6}-free graph. By induction, there exists a total dominating set S^{\prime} of G^{\prime} such that $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n}{2}$. Since S^{\prime} is a total dominating set of $G, \gamma_{t}(G) \leq\left|S^{\prime}\right| \leq \frac{n}{2}$.

Case 2. G contains an induced subgraph C_{6}. Let $u_{0}, u_{1}, \ldots, u_{5}, u_{0}$ be an induced subgraph C_{6}. Let $V_{c}=V\left(C_{6}\right), A=N\left(V_{c}\right) \backslash V_{c}, B=V \backslash\left(A \cup V_{c}\right)$ and $C=N(B) \backslash B$. Since $G \neq C_{6}, A \neq \emptyset$. It is obvious that $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ dominates A. If $B=\emptyset$, the result holds. So we can assume that $B \neq \emptyset$.

Case 2.1. $G[B \cup C]$ is not connected. Then C dominates B. Otherwise, there exists an induced P_{6} in G, which is a contradiction. Choose the minimum cardinality subset D of C such that D dominates B. Then $|D| \leq \frac{|C|+|B|}{2} \leq$ $\frac{|A|+|B|}{2}$. If $|D|<\frac{|A|+|B|}{2}$, since $D \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G, it follows that $\gamma_{t}(G) \leq\left|D \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right|=|D|+4<\frac{n-6}{2}+4=\frac{n+2}{2}$. That is $\gamma_{t}(G) \leq \frac{n+1}{2}$. If $|D|=\frac{|A|+|B|}{2},|A|=|C|$. Say $u_{0} \in N(A)$. Then $D \cup\left\{u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. It follows that $\gamma_{t}(G) \leq \mid D \cup$ $\left\{u_{2}, u_{3}, u_{4}\right\}\left|=|D|+3 \leq \frac{n-5}{2}+3=\frac{n+1}{2}\right.$.

Case 2.2. $G[B \cup C]$ is connected. For any $0 \leq i \leq 5$, we define the set $R_{i}=A \backslash N\left(\left\{u_{i \oplus 2}, u_{i \oplus 3}, u_{i \oplus 4}\right\}\right)$, where \oplus is the addition modulo 6. For any $x \in A,\left|N(x) \cap V_{c}\right| \geq 2$. For any $x \in R_{i}$, it is easy to prove that $x \in$ $N\left(u_{i \oplus 1}\right) \cap N\left(u_{i \oplus 5}\right)$ for $0 \leq i \leq 5$. Then $R_{i} \cap R_{j}=\emptyset$ for any $0 \leq i<j \leq 5$. For any $i, R_{i} \cap C=\emptyset$. Otherwise, say $x \in R_{i} \cap C$ and $y \in N(x) \cap B$, then $G\left[\left\{y, x, u_{i \oplus 1}, u_{i \oplus 2}, u_{i \oplus 3}, u_{i \oplus 4}\right\}\right]=P_{6}$, contradicting the assumption that G is P_{6}-free.

Case 2.2.1. For any $i, R_{i} \neq \emptyset$. Let $G^{\prime}=G[B \cup C]$. Since all the R_{i} are not empty and disjoint, $n\left(G^{\prime}\right) \leq n-12$. If $n\left(G^{\prime}\right)=2$, the result holds. So, we can assume that $n\left(G^{\prime}\right) \geq 3$. Let S^{\prime} be a minimum total dominating set of G^{\prime}. Then $S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. If G^{\prime} is not C_{6}, by induction, we have $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2}$. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right|=$ $\left|S^{\prime}\right|+4 \leq \frac{n-11}{2}+4 \leq \frac{n+1}{2}$. If G^{\prime} is $C_{6},\left|S^{\prime}\right| \leq 4$. Since $n \geq 18, \gamma_{t}(G) \leq$ $\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right| \leq 8 \leq \frac{n+1}{2}$.

Case 2.2.2. There exists i such that $R_{i}=\emptyset$, say $R_{0}=\emptyset$. Then $\left\{u_{2}, u_{3}, u_{4}\right\}$ dominates A. Suppose that $u_{0} \in N(C)$. Assume $A \backslash C \neq \emptyset$. Let $G^{\prime}=G[B \cup$ $\left.C \cup\left\{u_{0}\right\}\right]$. Then $n\left(G^{\prime}\right) \leq n-6$ Let S^{\prime} be a γ_{t}-set of G^{\prime}. Then $S^{\prime} \cup\left\{u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. If G^{\prime} is not C_{6}, by induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2}$. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{2}, u_{3}, u_{4}\right\}\right|=\left|S^{\prime}\right|+3 \leq \frac{n-6+1}{2}+3 \leq \frac{n+1}{2}$. If G^{\prime} is C_{6}, then $n \geq 12$. Let $G^{\prime}=C_{6}: u_{0}, v_{1}, \ldots, v_{5}, u_{0}$. Then $v_{1}, v_{5} \in A$. Since v_{5} is dominated by $\left\{u_{2}, u_{3}, u_{4}\right\}$, it follows that $\left\{u_{2}, u_{3}, u_{4}, v_{1}, v_{2}, v_{3}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq 6 \leq \frac{n+1}{2}$. Suppose that $A=C$. Let $G^{\prime}=G\left[B \cup C \cup\left\{u_{0}, u_{5}\right\}\right]$. Then $n\left(G^{\prime}\right)=n-4$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. Then $S^{\prime} \cup\left\{u_{2}, u_{3}\right\}$ is a total dominating set of G. If G^{\prime} is not C_{6}, by induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2}$. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{2}, u_{3}\right\}\right|=\left|S^{\prime}\right|+2 \leq \frac{n-4+1}{2}+2 \leq \frac{n+1}{2}$. If G^{\prime} is C_{6}, then $n=10$. Let $G^{\prime}=C_{6}: u_{0}, v_{1}, \ldots, v_{4}, u_{5}, u_{0}$. Then $\left\{v_{1}, v_{2}, u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq 5 \leq \frac{n+1}{2}$.

Suppose that $u_{0} \notin N(C)$. If $|A \backslash C| \geq 2$, let $G^{\prime}=G[B \cup C]$. If $n\left(G^{\prime}\right)=2$, the result holds. So we can assume that $n\left(G^{\prime}\right) \geq 3$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. Then $S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. If G^{\prime} is not C_{6}, by induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-7}{2}$. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}\right|=\left|S^{\prime}\right|+4 \leq \frac{n+1}{2}$. If G^{\prime} is C_{6}, then $n \geq 14$. Let $G^{\prime}=C_{6}: v_{1}, \ldots, v_{6}, v_{1}$. Say $v_{6} \in C$. Then $\left\{v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}, u_{4}\right\}$ is a total dominating set of G. So, $\gamma_{t}(G) \leq 7 \leq \frac{n+1}{2}$.

Suppose that $|A \backslash C|=1$, say $v \in A \backslash C$. If $u_{1} \in N(C)$, let $G^{\prime}=G[B \cup$ $\left.C \cup\left\{u_{0}, u_{1}, u_{5}\right\}\right]$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. If G^{\prime} is not C_{6}, by induction, $\left|S^{\prime}\right| \leq \frac{n-4+1}{2}$. Then $\gamma_{t}(G) \leq\left|S^{\prime}\right|+2 \leq \frac{n+1}{2}$. If G^{\prime} is the graph C_{6}, then $n=10$. It is easy to prove that $\gamma_{t}(G) \leq 5 \leq \frac{n+1}{2}$. Hence, we can assume that $u_{1} \notin N(C)$. Then $u_{2} \in N(C)$. Otherwise, $G\left[B \cup C \cup V_{c}\right]$ contains a P_{6}, which is a contradiction. By a similar way, if $u_{2} \in N(C)$, the result holds.

Suppose that $A=C$. Without loss of generality, we can assume that $u_{2} \in$ $N(C)$. Let $G^{\prime}=G\left[B \cup C \cup\left\{u_{1}, u_{2}\right\}\right]$. Let S^{\prime} be a γ_{t}-set of G^{\prime}. If G^{\prime} is not C_{6}, by
induction, $\left|S^{\prime}\right| \leq \frac{n\left(G^{\prime}\right)+1}{2} \leq \frac{n-3}{2}$. So, $\gamma_{t}(G) \leq\left|S^{\prime} \cup\left\{u_{4}, u_{5}\right\}\right|=\left|S^{\prime}\right|+2 \leq \frac{n+1}{2}$. If G^{\prime} is C_{6}, then $n=10$. It is easy to prove that $\gamma_{t}(G) \leq 5 \leq \frac{n+1}{2}$.

It remains to establish that the bound is sharp. Let G obtained from a star $K_{1, r}$ by subdividing each edge exactly one time. Then $n(G)=2 r+1$. It is obvious that $\gamma_{t}(G)=r+1=\frac{n(G)+1}{2}$.

References

[1] D. Archdeacon, J. Ellis-monagham, D. Fisher, D. Froncek, P. C. B. Lam, S. Seager, B. Wei, and R. Yuster, Some remarks on domination, J. Graph Theory 46 (2004), no. 3, 207-210.
[2] R. C. Brigham, J. R. Carrington, and R. P. Vitray, Connected graphs with maximum total domination number, J. Combin. Math. Combin. Comput. 34 (2000), 81-95.
[3] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, Total domination in graphs, Networks 10 (1980), no. 3, 211-219.
[4] P. Dorbec and S. Gravier, Paired-domination in P_{5}-free graphs, Graphs Combin. 24 (2008), no. 4, 303-308.
[5] O. Favaron and M. A. Henning, Total domination in claw-free graphs with minimum degree 2, Discrete Math. 308 (2008), no. 15, 3213-3219.
[6] O. Favaron, M. A. Henning, C. M. Mynhart, and J. Puech, Total domination in graphs with minimum degree three, J. Graph Theory 34 (2000), no. 1, 9-19.
[7] M. A. Henning, Graphs with large total domination number, J. Graph Theory 35 (2000), no. 1, 21-45.

Xue-gang Chen
Department of Mathematics
North China Electric Power University
Beijing 102206, P. R. China
E-mail address: gxcxdm@163.com
Moo Young Sohn
Department of Mathematics
Changwon National University
Changwon 641-773, Korea
E-mail address: mysohn@changwon.ac.kr

[^0]: Received December 24, 2012; Revised March 23, 2013.
 2010 Mathematics Subject Classification. 05C50, 05C69.
 Key words and phrases. total domination numbers, P_{6}-free graphs.
 This work was financially supported by Changwon National University in 2011-2012.

