References
- GH. Abbaspour and A. Rahmani, Hyers-Ulam-Rassias and Ulam-Gavruta-Rassias stability of generalized quadtratic functional equations, Advances in Applied Mathematical Analysis 4 (2009), no. 1, 31-38.
-
B. Blackadar, Operator Algebras, Theory of
$C^{\ast}$ -Algebras and von Neumann Algebras, Encyclopedia of Mathematical Sciences, 122, Springer, 2006. - D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397. https://doi.org/10.1215/S0012-7094-49-01639-7
- L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens-Univ. Graz, Graz, 2004.
- L. Cadariu and V. Radu, Fixed points and the stability of the Jensen's functional equation, J. Inequal. Pure and Appl. Math. 4 (2003), no. 1, http//jipam.vu/edu.au, 1-7.
-
M. Eshaghi Gordji, N. Ghobadipour, and C. Park, Jordan *-homomorphisms between unital
$C^{\ast}$ -algebras, Commun. Korean Math. Soc. 27 (2012), no. 1, 149-158. https://doi.org/10.4134/CKMS.2012.27.1.149 - M. Eshaghi Gordji, T. Karimi, and S. Kaboli Gharetapeh, Approximately n-Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2009 (2009), Article ID 870843, 8 pages.
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approxiately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. https://doi.org/10.1006/jmaa.1994.1211
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222-224. https://doi.org/10.1073/pnas.27.4.222
- K. Jun, S. Jung, and Y. Lee, A generalisation of the Hyers-Ulam-Rassias stability of functional equation of Davison, J. Korean Math. Soc. 41 (2004), 501-511. https://doi.org/10.4134/JKMS.2004.41.3.501
- K. Jun and H. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. Soc. 38 (2001), no. 4, 679-687.
- K. Jun, H. Kim, and J. M. Rassias, Extended Hyers-Ulam stability for Cauchy-Jensen mapping, J. Difference Equ. Appl. 13 (2007), no. 12, 1139-1153. https://doi.org/10.1080/10236190701464590
- T. Miura, S. E. Takahasi, and G. Hirasawa, Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras, J. Inequal. Appl. 2005 (2005), no. 4, 435-441.
- M. S. Moslehian, Hyers-Ulam-Rassias stability of generalized derivations, Int. J. Math. Math. Sci. 2006 (2006), Article ID 93942, 8 pages.
- L. Oubbi, Ulam-Hyers-Rassias stability problem for several kinds of mappings, Afr. Mat. Springer Verlag, 2012; DOI 10.1007/s13370-012-0078-6 (18 pages).
- K. Park and Y. Jung, Stability of a functional equation obtained by combining two functional equations, J. Appl. Math. & Computing 14 (2004), no. 1-2, 415-422.
-
C. Park and J. M. Rassias, Stability of the Jensen-type functional equation in
$C^{\ast}$ -algebras: A fixed point approch, Abstr. Appl. Anal. 2009 (2009), Article ID 360432, 17 pages. - T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
- T. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. https://doi.org/10.1023/A:1006499223572
- S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940.
Cited by
- Hyers–Ulam stability of a functional equation with several parameters vol.27, pp.7-8, 2016, https://doi.org/10.1007/s13370-016-0403-6
- On Ulam Stability of a Functional Equation in Banach Modules vol.60, pp.01, 2017, https://doi.org/10.4153/CMB-2016-054-6