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HYERS-ULAM STABILITY OF MAPPINGS FROM A RING A

INTO AN A-BIMODULE

Lahbib Oubbi

To the memory of Bwa Hmad Khoudda n Ait Guetto

Abstract. We deal with the Hyers-Ulam stability problem of linear map-
pings from a vector space into a Banach one with respect to the following
functional equation:

f
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−x+ y

3

)

+ f

(

x− 3z

3

)

+ f

(

3x− y + 3z

3

)

= f(x).

We then combine this equation with other ones and establish the Hyers-
Ulam stability of several kinds of linear mappings, among which the al-
gebra (∗-) homomorphisms, the derivations, the multipliers and others.
We thus repair and improve some previous assertions in the literature.

1. Introduction and preliminaries

The Hyers-Ulam stability problem of a functional equation, or of a kind of
mappings with respect to such an equation, is by now folklore. Whether an
approximate solution of a functional equation can be approximated by an exact
solution of the same equation is the soul of the Hyers-Ulam stability problem.
This problem was reformulated in the frame of groups by S. M. Ulam [20] as
follows: if G1 is a group, (G2, d) is a metric group and ǫ > 0 is a scalar, does
it exist a number δ > 0 such that, whenever a function f : G1 → G2 satisfies
the inequality

d(f(xy), f(x)f(y)) < δ, ∀x, y ∈ G1,

there exists a group homomorphism T : G1 → G2 such that

d(f(x), T (x)) < ǫ, ∀x ∈ G1.

Whenever the answer to this problem is in the affirmative, one says that the
group homomorphisms from G1 into G2 are stable with respect to the equation
f(xy) = f(x)f(y), ∀x, y ∈ G1, and the uniform (or the Ulam) approximation.
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A partial solution of Ulam’s problem is given by D. H. Hyers [9]. The latter
showed that, under a weak continuity condition on f , the additive mappings
from a real Banach space E into another one F are stable with respect to the
Cauchy equation

f(x+ y) = f(x) + f(y)

and the Ulam approximation. Later, the Hyers-Ulam stability problem has
known a wide expansion in different directions. On one hand, the approxima-
tion condition has been improved by different authors. For instance, T. M.
Rassias [18] considered a non uniform approximation given by the so-called
bounded Cauchy differences. This new approximation was generalized by K.
W. Jun and H. M. Kim [11]. It seems that, up to now, the best approximation
condition was given by P. Găvruta [8], it is worth, however, to mention also
that given by L. Cadariu and V. Radu in [4, 5]. On the other hand, different
proofs of the Hyers-Ulam stability problem mainly of additive mappings be-
tween Banach spaces were produced [8, 9, 15, 18]. A third direction consists
of the functional equation with respect to which a kind of functions are shown
to be stable [9, 10, 18]. The first one considered was the Cauchy equation
f(x+y) = f(x)+f(y), then [4, 12] the Jensen equation 2f(x+y

2 ) = f(x)+f(y)
and so on. Further, such equations were combined with others in order to
show the Hyers-Ulam stability of (linear or) additive mappings with further
properties such as being a ring homomorphism, a derivation or so on (see for
details [1, 3, 7, 13, 14, 17]). In [15], it is given a general equation depending on
two parameters so that many of the results prior to [15] correspond to special
values of these parameters.

In this paper, after the foregoing introductory section, we will first give in
Section 2 several comments on the paper [6]. We will show that some assertions
therein are inexact. We then provide rectifications and improvements to such
assertions (see Proposition 2.2).

In Section 3, we deal with additive mappings from a linear space A into a
Banach space B and establish (see Theorem 3.1) their Hyers-Ulam-Găvruta-
stability with respect to the following equation introduced in [6]:

(E) f

(
−x+ y

3

)
+ f

(
x− 3z

3

)
+ f

(
3x− y + 3z

3

)
= f(x).

In particular (see Remark 3.2(3)), if a mapping f : A → B satisfies (E) up
to a function ϕ bounded by some M > 0, then there exists a unique additive
mapping h : A → B such that:

‖h(x)− f(x)‖ ≤
3

2
M, ∀x ∈ A.

As a matter of fact (see Theorem 3.1), when (E) is combined with another
equation such as f ◦ σ = γ ◦ f for some positively homogeneous mappings
σ : A → A and γ : B → B with γ continuous (involutions for instance), then h

turns out to satisfy h ◦ σ = γ ◦ h. In case of involutions, h is a ∗-mapping.
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We then establish the Hyers-Ulam-Găvruta-stability of linear mappings with
respect to an equation (13) similar to (E).

In Section 4, we are concerned with additive (linear) mappings from a ring
(algebra) A into a Banach space (or Algebra) B satisfying additional properties
such as being a homomorphism, a derivation, a multiplier and so on. We
provide general results (see Theorem 4.1 and Theorem 4.3) covering a wide
class of such mappings. As special cases, we show the Hyers-Ulam stability of
ring (∗-) homomorphisms, ring derivations and several other types of mappings
with respect to (E), combined with appropriate equations, and the bounded
Cauchy differences as approximation. We also get similar results but with the
Cadariu-Radu approximation. Since our results depend on arbitrary mappings
σ and the γj ’s, a wide range of other applications can be obtained according
to such maps one considers.

In all what follows, the vector spaces and algebras in consideration will have
K = R or C as basic field. Unless the contrary is stated, A will stand for an
arbitrary vector space and B for a Banach space with respect to some norm || ||.
We will denote by f a function from A into B and by K∗ the set K \ {0}. We
will assume that f(0) = 0 although this is sometimes automatically satisfied
under the conditions in consideration. We will also denote by N (resp. N∗) the
set of all non negative (resp. positive) integers. If A happens to be a unital
C∗-algebra, we will denote by U(A), the set of all unitary elements of A. This
is U(A) = {a ∈ A : a∗a = aa∗ = e}, where obviously e stands for the unit of
A. Finally, we will denote by T1 the set {z ∈ K : |z| = 1}. In the real case this
is only {−1, 1}.

2. Remarks on [6]

In [6], Eshaghi Gordji et al. give the following result asserting the supper
stability of Jordan ∗-homomorphisms between C∗-algebras:

Theorem 2.1 ([6, Theorem 2.2]). Let A and B be unital C∗-algebras, p < 1
and θ nonnegative real numbers, and f : A → B a mapping satisfying f(0) = 0
and

(0.1) f(3nux) = f(3nu)f(x), ∀u ∈ U(A), x ∈ A,

(0.2)

∥∥∥∥f
(
b− a

3

)
+ f

(
a− 3µc

3

)
+ µf

(
3a+ 3c− b

3

)∥∥∥∥ ≤ ‖f(a)‖,

∀µ ∈ T1, ∀(a, b, c) ∈ A3,

(0.3) ‖f (3n u∗)− f(3nu)∗‖ ≤ 2θ3np, ∀u ∈ U(A), n ∈ N.

Then f is a Jordan ∗-homomorphism.

Actually the only mapping f satisfying (0.2) is the null function. For, the
additivity of f is guarantied by Lemma 2.1 of the same paper whenever µ = 1.
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But µ = −1 and a = c = 0 in (0.2) gives f( b3 ) = 0 for every b ∈ A which
ensures f = 0 everywhere.

It seems that, under these conditions, nothing guaranties the homogeneity
of f . The best thing one can expect of (0.2), without any µ, is that f is
additive. Moreover, in presence of (0.2), the conditions (0.1) and (0.3) imply
respectively f(ux) = f(u)f(x), and f(u∗) = f(u)∗ for every u ∈ U(A) and
x ∈ A. The latter equality is ensured by the fact that p < 1. If p ≥ 1 however,
the sequence (3−nθ3np)n does not converge and this equality may fail to hold.
For this reason, Theorem 2.3, of [6] need not hold.

The following proposition shows the super stability of linear mappings with
respect to an equation similar to (E). It improves and repairs Theorem 2.2
and Theorem 2.3 therein.

Proposition 2.2. If f satisfies, for every (a, b, c) ∈ A3 and every µ ∈ T1:

(1)

∥∥∥∥f
(
µ
b− a

3

)
+ f

(
µ
a− 3c

3

)
+ µf

(
3a+ 3c− b

3

)∥∥∥∥ ≤ ‖f(a)‖,

then f is linear. Moreover, if A is a C∗-algebra and B is an algebra with an

involution ∗, then f is a ring *-homomorphism provided it enjoys f(uv∗) =
f(u)f(v)∗ for all u, v ∈ U(A).

In the real case, we additionally assume that, for every x ∈ A, the mapping

fx : R → B, t 7→ f(tx) is bounded on some ]− ǫx, ǫx[, ǫx > 0.

Proof. We first fix µ = 1. If we take in (1), a = b = c = 0, we will obtain that
f(0) = 0. Now taking in (1) a = b = 0, we get f(−c) = −f(c) for every c ∈ A.
Further, a = 0 in (1) and the oddness of f yield f( b3 ) − f(c) + f(c − b

3 ) = 0.
Whence the additivity of f .

For the homogeneity of f , let µ be arbitrary in T1. If we take in (1) a = b = 0
and c arbitrary in A, we get f(µc) = µf(c). Since f is additive, f(rx) = rf(x)
for all x ∈ A and r ∈ Q. Therefore the homogeneity of f reduces to f(rx) =
rf(x) for every real r with 0 < r < 1. But in the complex case, for such a
number r, 2r is the sum of two numbers from T1. Hence, by additivity, f is
homogeneous.

In the real case, if (rn)n is a sequence of rational numbers converging to r,
then we have, for every integer p: ||f(rx) − rnf(x)|| =

1
p
||f(p(r − rn)x)||. But

for n large enough, p(r− rn) ∈]− ǫx, ǫx[. Hence ||f(p(r− rn)x)|| ≤ M for some
M > 0. Letting n tend to infinity yields ||f(rx) − rf(x)|| ≤ 1

p
M . Now if p

tends to infinity, we get f(rx) = rf(x), whence the homogeneity of f and the
linearity follows.

In order to show that f is a ∗-homomorphism whenever A is a C∗-algebra
and B is an algebra with an involution ∗ such that f(uv∗) = f(u)f(v)∗ for all
u, v ∈ U(A), notice that, for every u ∈ U(A), f(u) = f(u)f(e)∗ and similarly
f(u∗) = f(e)f(u)∗. Then, applying ∗ to the second equality, we get f(u)f(e)∗ =
f(u∗)∗, whereby f(u∗) = f(u)∗ for every u ∈ U(A). Since, in any unital
C∗-algebra, every element is a finite combination of unitary elements ([2], p.
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70), f is a ∗-linear mapping. On the other hand, for every u, v ∈ U(A),
f(uv) = f(u)f(v∗)∗ = f(u)f(v). Again, by the decomposability of elements of
a C∗-algebra as finite combinations of unitary elements, f(xy) = f(x)f(y) for
every x, y ∈ A. Whereby f is a ∗-homomorphism and the proof is achieved. �

In the same paper [6], Eshaghi Gordji et al. give the following assertion:

Theorem 2.3 ([6, Theorem 2.4]). Let A and B be unital C∗-algebras and

f : A → B a mapping for which there exists a function ϕ : A3 → R+ such that:

(0.4)
+∞∑

i=0

3nϕ

(
a

3n
b

3n
c

3n

)
< ∞, ∀(a, b, c) ∈ A3,

(0.5) lim
n→∞

32nϕ

(
a

3n
,
b

3n
,
c

3n

)
= 0, ∀(a, b, c) ∈ A3,

(0.6) ‖f(3nu∗)− f(3nu)∗‖B ≤ ϕ(3nu, 3nu, 3nu), ∀u ∈ U(A),

(0.7)∥∥∥∥f
(
µb− a

3

)
+ f

(
a− 3c

3

)
+ µf

(
3a+ 3c− b

3

)
− f(a) + f(c2)− f(c)2

∥∥∥∥

≤ ϕ(a, b, c), ∀µ ∈ T1, ∀(a, b, c) ∈ A3.

Then there exists a unique Jordan ∗-homomorphism h : A → B such that

‖h(a)− f(a)‖B ≤

+∞∑

i=0

3nϕ

(
a

3n
,
2a

3n
, 0

)
, ∀a ∈ A.

The first thing to be noticed here is that the condition (0.5) implies the
other (0.4). Actually, as we will see later on, the latter is sufficient to show the
desired results. Moreover, the only ∗-homomorphism k satisfying the equation

k

(
µb− a

3

)
+ k

(
a− 3c

3

)
+ µk

(
3a+ 3c− b

3

)
− k(a) + k(c2)− k(c)2 = 0

is the null one. For, if we put a = b = 0, we obtain k(c) = µk(c) for every
µ ∈ T1 and every c ∈ A. But this is true only if k = 0. Hence the assertion
above is also vacuous.

In the following section, we will provide results repairing and improving this
assertion.

3. Hyers-Ulam stability of additive mappings

We start this section with the following lemma showing the Hyers-Ulam
stability of additive mappings with respect to the equation:

f

(
b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a+ 3c− b

3

)
= f(a).
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Actually it is a generalization of the Hyers-Ulam-Găvruta stability since, in
the approximation condition, a large range of mappings ϕ are allowed, while
the classical Hyers-Ulam-Găvruta result is given for ϕ’s corresponding in our
result to the case ǫ = 1 (see the lemma bellow).

In all the following, we will say that a mapping σ from a linear space E into
another one F is homogeneous if, for every r ∈ K and x ∈ E, σ(rx) = rσ(x).
It is said to be positively homogeneous of order p > 0 if, for every r ≥ 0 and
x ∈ E, σ(rx) = rpσ(x). Whenever p = 1, we will only say that σ is positively
homogeneous.

Lemma 3.1. Suppose that f(0) = 0 and that there exist ǫ = ±1 and a function

ϕ : A3 → R+ such that, for all (a, b, c) ∈ A3,

(2)

∞∑

n=0

3ǫnϕ

(
a

3ǫn
,

b

3ǫn
,

c

3ǫn

)
< +∞

and

(3)

∥∥∥∥f
(
b− a

3

)
+ f

(
a− 3c

3

)
+ f

(
3a+ 3c− b

3

)
− f(a)

∥∥∥∥ ≤ ϕ(a, b, c).

Then there exists a unique additive mapping h : A → B such that

(4) ‖h(x) − f(x)‖ ≤

∞∑

n=0

3ǫnϕ

(
x

3ǫn
,
2x

3ǫn
, 0

)
, ∀x ∈ A.

Moreover, if σ : A → A and δ : B → B are positively homogeneous mappings

with δ continuous and

(5) ‖f (σ(a))− δ(f(a))‖ ≤ ϕ(a, 0, 0), ∀a ∈ A,

then h(σ(a)) = δ(h(a)), ∀a ∈ A.

Proof. For an arbitrary a ∈ A, if we apply (3) to a, b = 2a and c = 0, we will
get:

(6)
∥∥∥3f

(a
3

)
− f(a)

∥∥∥ ≤ ϕ (a, 2a, 0) ,

or equivalently

(7)

∥∥∥∥f(a)−
1

3
f(3a)

∥∥∥∥ ≤
1

3
ϕ (3a, 2(3a), 0) .

Hence, for each integer k ≥ 1,

(8)
∥∥∥3k+1f

( a

3k+1

)
− 3kf

( a

3k

)∥∥∥ ≤ 3kϕ

(
a

3k
,
2a

3k
, 0

)

and

(9)

∥∥∥∥
1

3k+1
f(3k+1a)−

1

3k
f(3ka)

∥∥∥∥ ≤
1

3k+1
ϕ
(
3k+1a, 2.3k+1a, 0

)
.
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By the triangular inequality, for every (n,m) ∈ N2,

(10)
∥∥∥3ǫnf

( a

3ǫn

)
− 3ǫmf

( a

3ǫm

)∥∥∥ ≤

n∑

k=m

3ǫkϕ

(
a

3ǫk
,
2a

3ǫk
, 0

)
.

Since the series
∞∑

n=0

3ǫnϕ

(
a

3ǫn
,
2a

3ǫn
, 0

)

converges in R, for every a ∈ A, the sequence
(
3ǫnf

(
a

3ǫn

))
n
is Cauchy in B.

Hence it converges to some element h(a) ∈ B satisfying (4), this is:

‖h(a)− f(a)‖ ≤

∞∑

k=0

3ǫkϕ

(
a

3ǫk
,
2a

3ǫk
, 0

)
, ∀a ∈ A.

Let us show that the so defined mapping h from A into B is additive. To this
aim, take in (3) a = b = 0, and c = x

3ǫn with x ∈ A, then multiply both sides
by 3ǫn and get:

(11)
∥∥∥3ǫnf

( x

3ǫn

)
+ 3ǫnf

(
−

x

3ǫn

)∥∥∥ ≤ 3ǫnϕ
(
0, 0,

x

3ǫn

)
.

Making n tend to infinity, we get h(−x) = −h(x) for every x ∈ A. Now, if we
take in (3) a = 0, b = x

3ǫn and c = y
3ǫn , with x, y ∈ A, then multiply again both

sides by 3ǫn, we get:

(12)
∥∥∥3ǫnf

( x

3ǫn

)
+3ǫnf

( y

3ǫn

)
+3ǫnf

(
−

x

3ǫn
−

y

3ǫn

)∥∥∥ ≤ 3ǫnϕ
(
0,

x

3ǫn
,
y

3ǫn

)
.

As n tends on infinity, we obtain the additivity of h, using the fact that h(−x) =
−h(x) for x ∈ A.

Now, let us show the unicity of h. Assume that there is some other mapping
k : A → B satisfying (4). Then, for every a ∈ A and every n ∈ N, one has:

‖h(a)− k(a)‖ ≤ 3ǫn‖h
( a

3ǫn

)
− f

( a

3ǫn

)
‖+ 3ǫn‖k

( a

3ǫn

)
− f

( a

3ǫn

)
‖

≤ 2

(
3ǫn

∞∑

i=0

3ǫiϕ

(
a

3ǫ(i+n)
,

2a

3ǫ(i+n)
, 0

))

≤ 2

∞∑

i=0

3ǫ(i+n)ϕ

(
a

3ǫ(i+n)
,

2a

3ǫ(i+n)
, 0

)

≤ 2

∞∑

i=n

3ǫnϕ

(
a

3ǫn
,
2a

3ǫn
, 0

)
.

Since the last member tends to 0 as n tends to infinity, h(a) = k(a). As a is
arbitrary, we conclude that h = k.

Now, take in (5) a = x
3ǫn and get:

∥∥∥3ǫnf
(
σ
( x

3ǫn

))
− 3ǫnδ

(
f
( x

3ǫn

))∥∥∥ ≤ 3ǫnϕ
( x

3ǫn
, 0, 0

)
, ∀x ∈ A.
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Hence, using the homogeneity condition on σ and δ,
∥∥∥∥3

ǫnf

(
σ(x)

3ǫn

)
− δ

(
3ǫnf

( x

3ǫn

))∥∥∥∥ ≤ 3ǫnϕ
( x

3ǫn
, 0, 0

)
, ∀x ∈ A.

Since δ is continuous as n tends to infinity, we get the required conclusion. �

Remark 3.2. 1. In the lemma above, in case ǫ = 1, the condition f(0) = 0 is
automatically satisfied since, from (2) derives immediately ϕ(0, 0, 0) = 0 and
by taking a = b = c = 0 in (3), we conclude that also f(0) = 0.

2. Under the conditions of the lemma above, if A and B are endowed with
linear involutions both denoted by ∗ and if that of B is continuous such that,

‖f (a∗))− (f(a))∗‖ ≤ ϕ(a, 0, 0), ∀a ∈ A,

then the mapping h given by the lemma is involutive, in the sense that h(x∗) =
(h(x))∗, ∀x ∈ A. In particular, if A and B are C∗-algebras and h is an algebra
homomorphism, then it is also a star algebra homomorphism. We will give
later on conditions under which h is an algebra homomorphism.

3. Whenever ǫ = −1, every bounded function ϕ satisfies (2). Hence the
lemma above holds for such a mapping.

The following theorem gives the (generalized) Hyers-Ulam-Găvruta stability
of linear mapping.

Theorem 3.3. Suppose that f(0) = 0 and that there exist ǫ = ±1 and a

function ϕ : A3 → R+ satisfying (2) and

(13)

∥∥∥∥f
(
µ
b− a

3

)
+f

(
µ
a− 3c

3

)
+µf

(
3a+ 3c− b

3

)
−µf(a)

∥∥∥∥ ≤ ϕ(a, b, c),

∀(a, b, c) ∈ A3, µ ∈ T1.

Then there exists a unique linear mapping h : A → B such that (4) holds.
In the real case, we additionally assume that, for every x ∈ A, the mappings

fx : R → B

t 7→ f(tx)
and ϕ̃x : R → B

t 7→
∑+∞

i=0 3ǫnϕ( tx
3ǫn ,

2tx
3ǫn , 0)

are bounded on some interval ]− ǫx, ǫx[, ǫx > 0.

Proof. By Lemma 3.1, whenever µ = 1, there exists a unique additive mapping
h satisfying (4). Moreover h is given by the formula h(x) = limn→∞ 3ǫnf( x

3ǫn ).
Then taking in (13), b = a = 0 and c = x

3ǫn , with x ∈ A, we get:

(14)
∥∥∥3ǫnf

(
−µ

x

3ǫn

)
+ µ3ǫnf

( x

3ǫn

)∥∥∥ ≤ 3ǫnϕ
(
0, 0,

x

3ǫn

)
.

Letting n tend to infinity, we obtain, for every x ∈ A and µ ∈ T1, h(µx) =
µh(x). Hence, by additivity, the homogeneity of h reduces to h(rx) = rh(x)
for every real r with 0 < r < 1. But in the complex case 2r is the sum of two
elements from T1 and the homogeneity follows.
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In the real case, assume that some sequence (rn)n∈N of rational numbers con-
verges to r and consider an arbitrary p > 0. Then

∃np ∈ N, ∀n ≥ np : p(r − rn) ∈]− ǫx, ǫx[.

Then, by the hypotheses on ϕ̃x and fx, there is some M > 0 so that for n ≥ np

∞∑

i=0

3ǫiϕ

(
p(r − rn)x

3ǫi
,
2p(r − rn)x

3ǫi
, 0

)
≤ M and ‖f (p(r − rn)x) ‖ ≤ M.

Hence,

‖h(rx)− rnh(x)‖

=
1

p
‖h(p(r − rn)x)‖

≤
1

p
(‖h(p(r − rn)x)− f(p(r − rn)x)‖ + ‖f(p(r − rn)x)‖)

≤
1

p

(
∞∑

i=0

3ǫiϕ

(
p(r − rn)x

3ǫi
,
2p(r − rn)x

3ǫi
, 0

)
+ ‖f(p(r − rn)x)‖

)

≤
2

p
M.

Therefore, when n tends to infinity, we get ‖h(rx) − rh(x)‖ ≤ 1
p
M . Letting

p tend to infinity, we come to h(rx) = rh(x) and then to the homogeneity of
h. �

4. Hyers-Ulam stability of mappings between rings

In this section, we will combine (3) or (13) with other equations in order
to establish the Hyers-Ulam stability of several types of mappings. To this
purpose, let L(E,F ) denote the space of all linear mappings from a vector
space E into another F .

Theorem 4.1. Given n ∈ N∗. For every 1 ≤ j ≤ n, consider the spaces Cj and
Dj and the mappings gj : A

2 → Cj, kj : A
2 → Dj and γj : Cj ×Dj → B such

that {Cj , Dj} ⊂ {A,B}, gj and kj are (independently) linear or the composition

of f with some element of L(A2, A) and γj is positively homogeneous of order
2 and continuous in the variable(s) in B. Let also σ : A2 → A be positively

homogeneous of order 2.
If there exist ǫ = ±1 and a function ϕ : A3 → R+ satisfying (2), (3) and the

following two conditions:

(15) lim
k→∞

32ǫkϕ
( a1

3ǫk
,
a2

3ǫk
, 0
)
= 0, ∀(a1, a2) ∈ A2,

(16)∥∥∥∥∥∥
f (σ(a1, a2))−

n∑

j=1

γj (gj(a1, a2), kj(a1, a2))

∥∥∥∥∥∥
≤ ϕ(a1, a2, 0), ∀(a1, a2) ∈ A2,
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then there exists a unique additive mapping h : A → B such that (4) holds and

(17) h(σ(x, y)) =

n∑

j=1

γj(g̃j(x, y), k̃j(x, y)), ∀(x, y) ∈ A2.

Here, g̃j = gj if gj is linear and g̃j = h ◦ l if gj = f ◦ l for some l ∈ L(A2, A).

Similarly, k̃j = kj if kj is linear and k̃j = h ◦ m if kj = f ◦ m for some
m ∈ L(A2, A).

Proof. By Lemma 3.1, there exists a unique additive mapping h : A → B

such that (4) holds. Now, if we take in (16), a1 = x
3ǫk and a2 = y

3ǫk , then,
using the homogeneity condition on the maps σ and the γj ’s, we get, for every
(x, y) ∈ A2:

∥∥∥∥∥∥
32ǫkf

(
σ(x, y)

32ǫk

)
−

n∑

j=1

γj

(
3ǫkgj

( x

3ǫk
,
y

3ǫk

)
, 3ǫkkj

( x

3ǫk
,
y

3ǫk

))
∥∥∥∥∥∥

≤ 32ǫkϕ
( x

3ǫk
,
y

3ǫk
, 0
)
.

But if gj is linear, then, for every k and every (x, y) ∈ A2, 3ǫkgj(
x
3ǫk

, y

3ǫk
)) =

gj(x, y); otherwise, gj = f ◦ l for some linear l and then

3ǫkgj

( x

3ǫk
,
y

3ǫk

)
= 3ǫkf

(
l(x, y)

3ǫk

)
.

The same hold also for kj . Moreover, by hypothesis 32ǫkϕ( x
3ǫk ,

y
3ǫk , 0) tends

to 0 as k tends to infinity. Hence, by the continuity condition on the γj ’s, we
obtain as k tends to ∞:

h(σ(x, y)) =
n∑

j=1

γj

(
g̃j(x, y), k̃j(x, y)

)
, ∀(x, y) ∈ A2.

This achieves the proof. �

Remark 4.2. The “continuity in the variable(s) in B” means that, whenever
for instance Cj = A and Dj = B, for every a ∈ A, the partial mapping
γj,a : b 7→ γj(a, b) is continuous from B into itself. Similarly, if Dj = A

and Cj = B, the partial mapping γa
j : b 7→ γj(b, a) is continuous. Finally, if

Cj = Dj = B, then γj is continuous in both variables.

In the following, we give a slightly different version of this theorem. Its proof
is omitted since it is similar to the one above.

Theorem 4.3. Let n, j, Cj , Dj and γj be as in Theorem 4.1 and let gj : A →
Cj, kj : A → Dj and σ : A → A be mappings such that σ is positively homoge-
neous of order 2 and gj and kj are (independently) linear or equal to f .

If there exist ǫ = ±1 and a function ϕ : A3 → R+ satisfying (2), (3) and

(18) lim
k→∞

32ǫkϕ
( a

3ǫk
, 0, 0

)
= 0, ∀a ∈ A,



STABILITY OF MAPPINGS FROM A RING A INTO AN A-BIMODULE 777

(19)

∥∥∥∥∥∥
f (σ(a))−

n∑

j=1

γj (gj(a), kj(a))

∥∥∥∥∥∥
≤ ϕ(a, 0, 0), ∀a ∈ A,

then there exists a unique additive mapping h : A → B such that (4) holds and

(20) h(σ(x)) =
n∑

j=1

γj

(
g̃j(x), k̃j(x)

)
, ∀x ∈ A.

Here, g̃j = gj (resp. k̃j = kj) if gj (resp. kj) is linear and g̃j = h (resp.

k̃j = h) otherwise.

As applications, let us first give some corollaries of Theorem 4.1 or Theorem
4.3 for general Găvruta type approximation. We will then take special ϕ’s
in order to get results of type Cadariu-Radu or Rassias. Before that, if B is
an A-bimodule (then for every a ∈ A, the mappings b 7→ ab and b 7→ ba are
continuous form B into itself) and h : A → B an additive mapping, we will say
that h is an Anansa derivation (resp. left multiplier, right multiplier, multiplier)
if, for every element x ∈ E, h(x2) = h(x)x + xh(x) (resp. h(x2) = h(x)x,
h(x2) = xh(x), h(x2) = xh(x) = h(x)x). If A and B are algebras, h will
be said to be an Anansa ring homomorphism if, for every element x ∈ A,
h(x2) = h(x)2.

Corollary 4.4. Assume that A is an algebra and B is a Banach algebra and

that ϕ : A3 → R+ satisfies (2), (3), (18) and

(21)
∥∥f
(
a2
)
− f(a)2

∥∥ ≤ ϕ(a, 0, 0), ∀a ∈ A.

Then there exists a unique Anansa ring homomorphism h : A → B enjoying

(4).

Proof. It suffices to take in Theorem 4.3: n = 1, C1 = D1 = B, g1 = k1 = f ,
σ(a) = a2 and γ1 : B2 → B; (b1, b2) 7→ b1b2. Since B is a Banach algebra, γ1
is continuous. �

Corollary 4.5. Assume that A is an algebra, B an A-bimodule and that ϕ :
A3 → R+ satisfies (2), (3), (18) and, for some αi ∈ K, i = 1, 2:

(22)
∥∥f
(
a2
)
− α1af(a)− α2f(a)a

∥∥ ≤ ϕ(a, 0, 0), ∀a ∈ A.

Then there exists a unique additive map h : A → B enjoying (4) and

(23) h
(
a2
)
= α1ah(a) + α2h(a)a, ∀a ∈ A.

Proof. It suffices to take in Theorem 4.3: n = 2, σ(a) = a2, C1 = D2 = A,
D1 = C2 = B, g1 = k2 = IdA, k1 = g2 = f and γ1 : A×B → B; (a, b) 7→ α1ab

and γ2 : B × A → B; (b, a) 7→ α2ba. Since B is an A-bimodule, the mappings
γ1,a and γa

2 are continuous for every a ∈ A. �
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Remark 4.6. In the corollary above, if α1 = α2 = 1, then h is an Anansa
derivation. If α1 = 1 and α2 = 0, then h is an Anansa right multiplier. Finally
if α2 = 1 and α1 = 0, then h is an Anansa left multiplier.

A kind of generalization of this corollary in the spirit of Theorem 4.1 is the
following:

Corollary 4.7. Assume that A is an algebra, B an A-bimodule and that ϕ :
A3 → R+ satisfies (2), (3), (15) and, for some αi ∈ K, i = 1, 2:

(24) ‖f(xy)− α1xf(y)− α2f(x)y‖ ≤ ϕ(x, y, 0), ∀(x, y) ∈ A2.

Then there exists a unique additive map h : A → B enjoying (4) and

h(xy) = α1xh(y) + α2h(x)y, ∀(x, y) ∈ A2.

Proof. It suffices to take in Theorem 4.1: n = 2, σ(a, b) = ab, C1 = D2 = A,
D1 = C2 = B, g1 = p1, k1 = f ◦ p2, g2 = f ◦ p1, k2 = p2 and γ1 : A × B →
B; (a, b) 7→ α1ab and γ2 : B × A → B; (b, a) 7→ α2ba. Here pi stands for
the ith projection, i = 1, 2. Once again, γ1,a and γa

2 are continuous for every
a ∈ A. �

In [4] Cadariu and Radu considered a control by mappings ϕ enjoying the
following condition:

∃L ∈]0, 1[, : ϕ
(x
2
,
y

2

)
≤

L

2
ϕ(x, y), ∀(x, y) ∈ A2.

Actually a mapping ϕ satisfying a similar condition in the present framework,
namely:

(25) ∃L ∈]0, 1[, ∃ǫ = ±1 : ϕ
( x

3ǫ
,
y

3ǫ
,
z

3ǫ

)
≤

L

3ǫ
ϕ(x, y, z), ∀(x, y, z) ∈ A3

turns out to satisfy also (2). We therefore get the following corollary of Cadariu-
Radu type:

Corollary 4.8. Assume that A is an algebra, B is an A-bimodule and that

ϕ : A3 → R+ satisfies (3) and (25). Then there exists a unique additive map
h : A → B enjoying (4). Moreover, if 3ǫL < 1 and, for some αi ∈ K, i = 1, 2:

(26) ‖f(xy)− α1xf(y)− α2f(x)y‖ ≤ ϕ(x, y, 0), ∀(x, y) ∈ A2,

then

h(xy) = α1xh(y) + α2h(x)y, ∀(x, y) ∈ A2.

Proof. Just note that, whenever 3ǫL < 1, the sequence 32ǫnϕ( x
3ǫn ,

y
3ǫn ,

z
3ǫn )

tends to 0 as n tends to infinity, (x, y, z) being arbitrary in A3. �

Remark 4.9. In all the results above, if one wants h to be linear, one has to
assume that f and ϕ satisfy (13) instead of (3) and that, in the real case, the
mappings fx and ϕ̃x are bounded on some neighborhood of 0, x being arbitrary
in A.
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Now, we come to applications where the approximation is relative to a kind
of “bounded Cauchy differences” as by T. M. Rassias [18]. Here the condition
f(0) = 0 is automatically satisfied.

Corollary 4.10. Let (A, ‖ ‖) be a normed space, p1, p2, p3 and θ be positive

scalars such that q := min(p1, p2, p3) > 1 or r := max(p1, p2, p3) < 1. Assume
that:

(27)

∥∥∥∥f
(
µ
b− a

3

)
+ f

(
µ
a− 3c

3

)
+ µf

(
3a+ 3c− b

3

)
− µf(a)

∥∥∥∥

≤ θ (‖a‖p1 + ‖b‖p2 + ‖c‖p3) , ∀µ ∈ T1, ∀(a, b, c) ∈ A3.

Then there exists a unique linear mapping h : A → B such that

(28) ‖h(x)− f(x)‖ ≤






θ(‖x‖p1+‖2x‖p2)

1−3(1−min(p1,p2)) , q > 1,

θ(‖x‖p1+‖2x‖p2)

1−3(max(p1,p2)−1) , r < 1.

In the real case, we additionally suppose that, for every x ∈ A, fx is bounded

on some neighborhood of 0.
Whenever r < 1 or q > 1 and min(p1, p2) > 2, if A happens to be an algebra

and B an A-bimodule so that, for some αi ∈ K, i = 1, 2:

(29) ‖f(xy)− α1xf(y)− α2f(x)y‖ ≤ θ (‖x‖p1 + ‖y‖p2) , ∀(x, y) ∈ A2,

then h enjoys

h(xy) = α1xh(y) + α2h(x)y, ∀(x, y) ∈ A2.

Proof. Let us show that the mapping ϕ defined by:

ϕ(a, b, c) := θ (‖a‖p1 + ‖b‖p2 + ‖c‖p3) , (a, b, c) ∈ A3

satisfies (2). To this aim, let (a, b, c) ∈ A3 be given. If q > 1, taking ǫ = 1, we
have:

∞∑

n=0

3nϕ

(
a

3n
,
b

3n
,
c

3n

)
= θ

∞∑

n=0

3n
(∥∥∥

a

3n

∥∥∥
p1

+

∥∥∥∥
b

3n

∥∥∥∥
p2

+
∥∥∥
c

3n

∥∥∥
p3
)

= θ

∞∑

n=0

3n
(

1

3np1
‖a‖p1 +

1

3np2
‖b‖p2 +

1

3np3
‖c‖p3

)

≤ θ(‖a‖p1 + ‖b‖p2 + ‖c‖p3)
∞∑

n=0

3n(1−q)

≤
θ (|a‖p1 + ‖b‖p2 + ‖c‖p3)

1− 3(1−q)
.

Now, if r < 1, set ǫ = −1 and get:
∞∑

n=0

3−nϕ

(
a

3−n
,

b

3−n
,

c

3−n

)
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= θ

∞∑

n=0

3−n

(∥∥∥
a

3−n

∥∥∥
p1

+

∥∥∥∥
b

3−n

∥∥∥∥
p2

+
∥∥∥

c

3−n

∥∥∥
p3
)

= θ

∞∑

n=0

3−n

(
1

3np1
‖a‖p1 +

1

3np2
‖b‖p2 +

1

3np3
‖c‖p3

)

≤ θ(‖a‖p1 + ‖b‖p2 + ‖c‖p3)

∞∑

n=0

3n(r−1)

≤
θ (|a‖p1 + ‖b‖p2 + ‖c‖p3)

1− 3(r−1)
.

It follows that ϕ enjoys (2). Notice that, in the real case, the map

ϕ̃x : t 7→
∞∑

n=0

3ǫnθ

(∥∥∥∥
ta

3ǫn

∥∥∥∥
p1

+

∥∥∥∥
2ta

3ǫn

∥∥∥∥
p2
)

is bounded on the unit interval. Indeed, if |t| ≤ 1, then, putting α = q if ǫ = 1
and α = r if ǫ = −1, we obtain:

∞∑

n=0

3ǫnϕ

(
tx

3ǫn
,
2tx

3ǫn
, 0

)
=

∞∑

n=0

3ǫnθ

(∥∥∥∥
tx

3ǫn

∥∥∥∥
p1

+

∥∥∥∥
2tx

3ǫn

∥∥∥∥
p2
)

≤ θ(‖x‖p1 + ‖2x‖p2)
∞∑

n=0

3ǫn(1−α)

≤
θ(‖x‖p1 + ‖2x‖p2)

1− 3ǫ(1−α)
.

Since the last term does not depend on t and is finite, ϕ̃x is bounded on ]−1, 1[.
Therefore, by Theorem 3.3, there exists a unique linear mapping h : A → B

such that (4) holds. But, in our framework, (4) implies:

(30) ‖h(x)− f(x)‖ ≤





θ(‖x‖p1+‖2x‖p2)

1−3(1−min(p1,p2)) , q > 1,

θ(‖x‖p1+‖2x‖p2)

1−3(max(p1,p2)−1) , r < 1.

Moreover, whenever r < 1 or q > 1 and min(p1, p2) > 2, the equation (15)
turns out to be satisfied and Theorem 4.1 permits to conclude. �

A special case of this corollary is obtained by taking all the pi’s equal to a
fixed 0 < p 6= 1.

Corollary 4.11. Suppose that A is a normed space. If there are 0 < p 6= 1
and θ > 0 such that, for all (a, b, c) ∈ A3 and all µ ∈ T1, f satisfies:

∥∥∥∥f
(
µ
b− a

3

)
+ f

(
µ
a− 3c

3

)
+ µf

(
3a− b+ 3c

3

)
− µf(a)

∥∥∥∥
≤ θ (‖a‖p + ‖b‖p + ‖c‖p) ,
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then there exists a unique linear mapping h : A → B such that, for ǫ = 1 if
p > 1 and ǫ = −1 if p < 1,

‖h(x)− f(x)‖ ≤
θ(1 + 2p)

1− 3ǫ(1−p)
‖x‖p, ∀x ∈ A.

If p > 2 or p < 1, A is an algebra and B is an A-bimodule so that, for some

αi ∈ K, i = 1, 2:

‖f(xy)− α1xf(y)− α2f(x)y‖ ≤ θ (‖x‖p + ‖y‖p) , ∀(x, y) ∈ A2,

then h enjoys

h(xy) = α1xh(y) + α2h(x)y, ∀(x, y) ∈ A2.
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