DOI QR코드

DOI QR Code

모래지반에서 표준관입시험에 따른 관입거동

Standard Penetration Test Performance in Sandy Deposits

  • 투고 : 2013.07.23
  • 심사 : 2013.10.04
  • 발행 : 2013.10.31

초록

본 논문에서는 표준관입시험(SPT) 중에 발생하는 관입거동을 표현하기 위한 이론식을 유도하여 나타내었다. 이를 위하여 에너지보존법칙을 도입하고 SPT 항타거동을 소형강관말뚝이 관입되는 것과 같이 모형화 하였다. 이론식에는 쉽게 결정하기 어려운 쌍곡선 매개변수(m과 ${\lambda}$)를 포함하여 3종류의 입력정수 항으로 구성되어 있다. 최적화된 m과 ${\lambda}$값은 3점에서의 측정값을 사용하여 시행착오법으로 구하였다. 체계적으로 측정된 기존의 자료로부터 얻어진 관입곡선과 예측 관입곡선을 비교한 결과 좋은 일치를 보여 주어서 본 이론식의 적용성이 입증되었다. 본 이론식에 의하면, 주어진 깊이에서 m값이 증가할수록 ${\lambda}$값은 감소하고 관입곡선의 곡률과 N값은 증가하였다. 일반적으로 예측 관입곡선은 예비타 부분을 넘어서면서 거의 직선적으로 변하였으며, 이러한 경향은 모래가 조밀할수록 현저하였다. 그러므로 제안방법은 불충분하게 측정된 관입곡선으로부터 30cm 관입에 해당하는 N값을 외삽법으로 구할 수 있다. 이와 유사한 결과는 역시 간단한 직선식을 이용하여 구할 수 있다.

This paper presents an equation to depict the penetration behavior during the standard penetration test (SPT) in sandy deposits. An energy balance approach is considered and the driving mechanism of the SPT sampler is conceptually modeled as that of a miniature open-ended steel pipe pile into sands. The equation consists of three sets of input parameters including hyperbolic parameters (m and ${\lambda}$) which are difficult to determine. An iterative technique is thus applied to determine the optimized values of m and ${\lambda}$ using three measured values from a routine SPT data. It is verified from a well-documented record that the simulated penetration curves are in good agreement with the measured ones. At a given depth, the increase in m results in the decrease in ${\lambda}$ and the increase in the curvature of the penetration curve as well as the simulated N-value. Generally, the predicted penetration curve becomes nearly straight for the portion of exceeding the seating drive zone, which is more pronounced as soil density increases. Thus, the simulation method can be applied to extrapolating a prematurely completed test data, i.e., to determining the N value equivalent to a 30 cm penetration. A simple linear equation is considered for obtaining similar results.

키워드

참고문헌

  1. ASTM D 1586-11 (2011), "Standard test method for standard penetration test (SPT) and split-barrel sampling of soil", Annual Book of ASTM Standard, Vol.04.08, American Society for Testing and Materials.
  2. BS 1377-9 (1990), "Methods of test for soils for civil engineering purpose - part 9: In-situ test", British Standard.
  3. Clayton, C.R.I. (1993), "The standard penetration test (SPT): methods and use", Report Prepared under Contract to CIRIA by the University of Surrey, 130p.
  4. Daniel, C.R. (2000), "Split spoon penetration testing in gravels", Master thesis, The University of British Columbia, 187p.
  5. Daniel, C.R., Howie, J. A., and Sy, A. (2003), "A method for correlating large penetration test (LPT) to standard penetration test (SPT) blow counts", Canadian Geotechnical Journal, 40(1): 66-77. https://doi.org/10.1139/t02-094
  6. Dung, N.T. and Chung, S.G. (2011), "Simulation of the standard penetration test (SPT) in sandy deposits", Proceedings of the 5th International Symposium on Deformation Characteristics of Geomaterials, Seoul, Sept. 1-3: 1158-1165.
  7. Dung, N.T., Chung, S.G., Kim, S.R., and Baek, S.H. (2011), "Applicability of the SPT-based methods for estimating toe bearing capacity of driven PHC piles in thick deltaic deposits", KSCE Journal of Civil Engineering, 15(6):1023-1031. https://doi.org/10.1007/s12205-011-0801-0
  8. Hettiarachchi, H. and Brown, T. (2009), "Use of SPT blow counts to estimate shear strength properties of soils: Energy balance approach", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(6): 830-834. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000016
  9. Jardine, R., Chow, F., Overy, R., and Standing, J. (2005), "ICP design methods for driven piles in sands and clays", Thomas Telford, 112p.
  10. Kulhawy, F. H. and Mayne, P. W. (1990), "Manual on estimating soil properties for foundation design", EPRI Report No. EL-6800, 308p.
  11. Lehane, B.M., Schneider, J. A., and Xu, X. (2007), "Development of the UWA-05 design method for open and closed ended driven piles in siliceous sand", Geotechnical Special publication, No. 158, ASCE: 1-10.
  12. Mayne, P.W. (2007), "Cone penetration testing", National Cooperative Highway Research Program, NCHRP Synthesis No. 386.
  13. Paik, K. and Salgado, R. (1993), "Determination of bearing capacity of open-ended piles in sand", Journal of Geotechnical and Geoenvironmental Engineering, 129(1): 46-57.
  14. Poulos, H.G. and Davis, E.H. (1980), "Pile foundation analysis and design", John Wiley & Sons.
  15. Randolph, M.F. (2003), "Science and empiricism in pile foundation design", Géotechnique, 53(10): 847-875. https://doi.org/10.1680/geot.2003.53.10.847
  16. Skempton, A.W. (1986), "Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, ageing and overconsolidation", Geotechnique, 36(3): 425-447. https://doi.org/10.1680/geot.1986.36.3.425
  17. White, D.J. (2005), "A general frame work for shaft resistance on displacement piles in sand", Proceedings of Frontiers in Offshore Geotechnics, ISFOG-2005, Taylor and Fancis Group, London: 697-703.
  18. White, D.J. and Lehane, B.M. (2004), "Friction fatigue on displacement piles in sand", Geotechnique, 54(10): 645-658. https://doi.org/10.1680/geot.2004.54.10.645

피인용 문헌

  1. The evaluation of artificial filling in loess areas by in-situ tests based on statistical analysis vol.80, pp.12, 2013, https://doi.org/10.1007/s12665-021-09729-w