DOI QR코드

DOI QR Code

Comparison of metal wire reinforcement and glass fiber reinforcement in repaired maxillary complete denture

상악 총의치 정중 파절 수리 시 금속선 및 유리섬유의 보강효과 비교

  • Lee, Jung-Ie (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jo, Jae-Young (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 이정이 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 조재영 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 윤미정 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 전영찬 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 정창모 (부산대학교 치의학전문대학원 치과보철학교실) ;
  • 허중보 (부산대학교 치의학전문대학원 치과보철학교실)
  • Received : 2013.09.02
  • Accepted : 2013.09.27
  • Published : 2013.10.31

Abstract

Purpose: This study compared fracture strength and fracture modes between metal wire reinforcement and glass fiber reinforcement in repaired maxillary complete denture. Materials and methods: In this study, fracture was reproduced on center of maxillary complete dentures and the denture was repaired with auto-polymerizing resin. The experimental groups (n = 10) were subjected to the following condition: without reinforcing material (control group), reinforcing with metal wire (W group), reinforcing with glass fiber pre-impregnated with light-curing resin (SES MESH, INNO Dental Co., Yeoncheon, Korea, G group). The fracture strength and fracture modes of a maxillary complete denture were tested using Instron test machine (Instron Co., Canton, MA, USA) at a 5.0 mm/min crosshead speed. The flexure load was applied to center of denture with a 20 mm diameter ball attachment. When fracture occurred, the fracture mode was classified based on fracture lines. The Kruskal-wallis test and the Mann-whitney U test were performed to identify statistical differences at ${\alpha}=.05$. Results: W group showed the highest value of fracture strength, there was no significant difference (P>.05) between control group and G group. Control group and W group showed anteroposterior fracture mainly, group W showed adhesive fracture of denture base and reinforcing material. Conclusion: In limitation of this study, the glass fiber did not improve the fracture strength of repaired maxillary complete denture, and adhesive failure was occurred along the lines of glass fiber.

연구 목적: 상악 레진상 총의치의 정중 파절부에 금속선과 유리섬유 보강재를 사용하여 수리하였을 때 파절 강도 및 파절 양상을 비교해 보고자 하였다. 연구 재료 및 방법: 본 연구에서는 상악 의치의 정중부 파절을 재현한 뒤, 자가중합레진과 보강재를 사용하여 수리하였다. 보강재의 종류에 따라 3개의 군(대조군, 보강재 없음; W 군, 금속선; G 군, 섬유유리)으로 나누었으며, 각군당10개의 시편을 제작하였다. Instron test machine (Instron Co., Canton, MA, USA)으로 5.0 mm/min의 크로스헤드 속도를 부여하여 파절 강도를 구하였으며, 이때 하중은 20 mm의 지름을 가진 구형 하중체를 통해 의치 중심부에 전달되었다. 파절 강도 시험 후 나타난 의치의 파절 양상을 분석하였다. Kruskal-wallis test와 Mann-whitney U test를 이용하여 ${\alpha}=.05$ 수준에서 검정하였다. 결과: 파절 강도는W 군에서 가장 높은 값을 보였고, 대조군과 G 군 사이에서는 통계적으로 유의한 차이를 보이지 않았다(P>.05). 대조군과W군에서는 전후방파절 양상을 주로 보였고, G군에서는 보강재를 따라 파절되는 양상을 주로 보였다. 결론: 본 연구의 한계 내에서, 상악 총의치의 수리 시 유리섬유 보강재를 이용하는 경우 파절 강도가 향상되지 않았으며(P>.05), 유리섬유 보강재를 따라 접착 실패를 보이는 파절 양상이 나타났다.

Keywords

References

  1. Vallittu PK, Lassila VP, Lappalainen R. Evaluation of damage to removable dentures in two cities in Finland. Acta Odontol Scand 1993;51:363-9. https://doi.org/10.3109/00016359309040587
  2. Hargreaves AS. The prevalence of fractured dentures. A survey. Br Dent J 1969;126:451-5.
  3. Darbar UR, Huggett R, Harrison A. Denture fracture-a survey. Br Dent J 1994;176:342-5. https://doi.org/10.1038/sj.bdj.4808449
  4. Smith DC. The acrylic denture. Mechanical evaluation, midline fractures. Br Dent J 1961;110:257-67.
  5. Yoshida K, Takahashi Y, Shimizu H. Effect of embedded metal reinforcements and their location on the fracture resistance of acrylic resin complete dentures. J Prosthodont 2011;20:366-71. https://doi.org/10.1111/j.1532-849X.2011.00720.x
  6. Takahashi T, Gonda T, Maeda Y. Influence of reinforcing materials on strain of maxillary complete denture. Acta Odontol Scand 2013;71:307-11. https://doi.org/10.3109/00016357.2012.680903
  7. Vallittu PK, Lassila VP. Reinforcement of acrylic resin denture base material with metal or fibre strengtheners. J Oral Rehabil 1992;19:225-30. https://doi.org/10.1111/j.1365-2842.1992.tb01096.x
  8. Vallittu PK, Lassila VP. Effect of metal strengthener's surface roughness on fracture resistance of acrylic denture base material. J Oral Rehabil 1992;19:385-91. https://doi.org/10.1111/j.1365-2842.1992.tb01580.x
  9. Jacobson TE, Chang JC, Keri PP, Watanabe LG. Bond strength of 4-META acrylic resin denture base to cobalt chromium alloy. J Prosthet Dent 1988;60:570-6. https://doi.org/10.1016/0022-3913(88)90216-8
  10. Vallittu PK. Effect of some properties of metal strengtheners on the fracture resistance of acrylic denture base material construction. J Oral Rehabil 1993;20:241-8. https://doi.org/10.1111/j.1365-2842.1993.tb01606.x
  11. Ruffino AR. Effect of steel strengtheners on fracture resistance of the acrylic resin complete denture base. J Prosthet Dent 1985;54:75-8. https://doi.org/10.1016/S0022-3913(85)80074-3
  12. Vallittu PK. Dimensional accuracy and stability of polymethyl methacrylate reinforced with metal wire or with continuous glass fiber. J Prosthet Dent 1996;75:617-21. https://doi.org/10.1016/S0022-3913(96)90246-2
  13. Tsue F, Takahashi Y, Shimizu H. Reinforcing effect of glass-fiberreinforced composite on flexural strength at the proportional limit of denture base resin. Acta Odontol Scand 2007;65:141-8. https://doi.org/10.1080/00016350601137236
  14. Narva KK, Lassila LV, Vallittu PK. The static strength and modulus of fiber reinforced denture base polymer. Dent Mater 2005;21:421-8. https://doi.org/10.1016/j.dental.2004.07.007
  15. Narva KK, Lassila LVJ, Vallittu PK. Flexural fatigue of denture base polymer with fiber-reinforced composite reinforcement. Composites Part A 2005;36:1275-81. https://doi.org/10.1016/j.compositesa.2005.01.025
  16. Stipho HD. Effect of glass fiber reinforcement on some mechanical properties of autopolymerizing polymethyl methacrylate. J Prosthet Dent 1998;79:580-4. https://doi.org/10.1016/S0022-3913(98)70180-5
  17. Jeong CM, Jeon YC. Reinforcement of acrylic resin metal wire. J Korean Acad Prosthodont 1996;34:823-32.
  18. Takahashi Y, Yoshida K, Shimizu H. Effect of location of glass fiber-reinforced composite reinforcement on the flexural properties of a maxillary complete denture in vitro. Acta Odontol Scand 2011;69:215-21. https://doi.org/10.3109/00016357.2010.549506
  19. Ward JE, Moon PC, Levine RA, Behrendt CL. Effect of repair surface design, repair material, and processing method on the transverse strength of repaired acrylic denture resin. J Prosthet Dent 1992;67:815-20. https://doi.org/10.1016/0022-3913(92)90591-W
  20. Stipho HD, Stipho AS. Effectiveness and durability of repaired acrylic resin joints. J Prosthet Dent 1987;58:249-53. https://doi.org/10.1016/0022-3913(87)90186-7
  21. Stipho HD. Repair of acrylic resin denture base reinforced with glass fiber. J Prosthet Dent 1998;80:546-50. https://doi.org/10.1016/S0022-3913(98)70030-7
  22. Lin CT, Lee SY, Tsai TY, Dong DR, Shih YH. Degradation of repaired denture base materials in simulated oral fluid. J Oral Rehabil 2000;27:190-8. https://doi.org/10.1046/j.1365-2842.2000.00513.x
  23. Thean HP, Chew CL, Goh KI, Norman RD. An evaluation of bond strengths of denture repair resins by a torsional method. Aust Dent J 1998;43:5-8. https://doi.org/10.1111/j.1834-7819.1998.tb00143.x
  24. Vallittu PK, Ruyter IE. Swelling of poly(methyl methacrylate) resin at the repair joint. Int J Prosthodont 1997;10:254-8.
  25. Dar-Odeh NS, Harrison A, Abu-Hammad O. An evaluation of self-cured and visible light-cured denture base materials when used as a denture base repair material. J Oral Rehabil 1997;24:755-60. https://doi.org/10.1046/j.1365-2842.1997.00571.x
  26. Berge M. Bending strength of intact and repaired denture base resins. Acta Odontol Scand 1983;41:187-91. https://doi.org/10.3109/00016358309162322
  27. Rached RN, Powers JM, Del Bel Cury AA. Repair strength of autopolymerizing, microwave, and conventional heat-polymerized acrylic resins. J Prosthet Dent 2004;92:79-82. https://doi.org/10.1016/j.prosdent.2004.04.005
  28. Minami H, Suzuki S, Kurashige H, Minesaki Y, Tanaka T. Flexural strengths of denture base resin repaired with autopolymerizing resin and reinforcements after thermocycle stressing. J Prosthodont 2005;14:12-8. https://doi.org/10.1111/j.1532-849X.2005.00006.x
  29. Vallittu PK. Glass fiber reinforcement in repaired acrylic resin removable dentures: preliminary results of a clinical study. Quintessence Int 1997;28:39-44.
  30. Kostoulas I, Kavoura VT, Frangou MJ, Polyzois GL. Fracture force, deflection, and toughness of acrylic denture repairs involving glass fiber reinforcement. J Prosthodont 2008;17:257-61. https://doi.org/10.1111/j.1532-849X.2007.00276.x
  31. Narva KK, Vallittu PK, Helenius H, Yli-Urpo A. Clinical survey of acrylic resin removable denture repairs with glass-fiber reinforcement. Int J Prosthodont 2001;14:219-24.
  32. Yazdanie N, Mahood M. Carbon fiber acrylic resin composite: an investigation of transverse strength. J Prosthet Dent 1985;54:543-7. https://doi.org/10.1016/0022-3913(85)90431-7
  33. DeBoer J, Vermilyea SG, Brady RE. The effect of carbon fiber orientation on the fatigue resistance and bending properties of two denture resins. J Prosthet Dent 1984;51:119-21. https://doi.org/10.1016/S0022-3913(84)80117-1
  34. Mullarky RH. Aramid fiber reinforcement of acrylic appliances. J Clin Orthod 1985;19:655-8.
  35. Lee KP, Kelly DP, Kennedy GL Jr. Pulmonary response to inhaled Kevlar aramid synthetic fibers in rats. Toxicol Appl Pharmacol 1983;71:242-53. https://doi.org/10.1016/0041-008X(83)90341-1
  36. Dunnigan J, Nadeau D, Paradis D. Cytotoxic effects of aramid fibres on rat pulmonary macrophages: comparison with chrysotile asbestos. Toxicol Lett 1984;20:277-82. https://doi.org/10.1016/0378-4274(84)90160-7
  37. Vallittu PK, Lassila VP, Lappalainen R. Transverse strength and fatigue of denture acrylic-glass fiber composite. Dent Mater 1994;10:116-21. https://doi.org/10.1016/0109-5641(94)90051-5
  38. Jang J, Han S. Mechanical Properties of Glass-fiber Mat/PMMA Functionally Gradient Composites, Composite: Part A 1999;30:1045-53. https://doi.org/10.1016/S1359-835X(99)00021-4
  39. Vertex-dental. http://www.vertex-dental.com/en/products/18-en/26/142-vertex-rapid-simplified/, 2013/10/23.
  40. Vertex-dental. http://www.vertex-dental.com/en/products/19-en/26/155-vertex-self-curing/, 2013/10/23.
  41. Leles CR, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC. Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment. J Oral Rehabil 2001;28:1153-7. https://doi.org/10.1046/j.1365-2842.2001.00786.x