DOI QR코드

DOI QR Code

$N_2O$ Emissions on the Soil of Alpine Wetland by Temperature Change

온도 변화에 따른 산지습지 토양의 $N_2O$ 배출 양상

  • Kim, Sang-Hun (Department of Life Science, Kyungpook National University) ;
  • Lim, Sung-Hwan (Department of Life Science, Kyungpook National University) ;
  • Choo, Yeon-Sik (Department of Life Science, Kyungpook National University)
  • Received : 2013.07.31
  • Accepted : 2013.09.10
  • Published : 2013.09.30

Abstract

Global warming due to climate change is a problem facing the entire world. Several factors, such as $CO_2O$ concentration, level of warming, soil temperature, precipitation, water content of soil and denitrification by denitrifying bacteria influence the emission of nitrous oxide ($N_2O$) from soil. In this study, we investigated nitrous oxide emissions from the soil of two wetlands, Jilmoineup in Mt. Odae and Moojechineup in Mt. Jungjok, according to temperature change. Soil collected in Jilmoineup in July showed increasing $N_2O$ emissions as temperature increases, but did not show any significant differences at $10^{\circ}C$ (p<0.05). Soil of $15^{\circ}C$ and $20^{\circ}C$ showed increasing pattern of $N_2O$ emissions until 24 h. After that, however, there was no difference in temperature. Overall, $N_2O$ emissions showed significant differences according to temperature (p<0.05). Soil collected from Moojechineup in July showed increasing $N_2O$ emissions according to temperature increase, but did not show any significant differences at $10^{\circ}C$ (p<0.05) as was the case for Jilmoineup soil. On the other hand, two wetland soils showed a slight increase of $N_2O$ emissions by additional nitrogen supply, but did not show any significant differences in the presence of nitrogen or between nitrogen sources. In conclusion, increasing temperature the wetland soil increased the emission of $N_2O$, which is a known greenhouse gas. In order to more clearly identify $N_2O$ emissions, various subsequent studies such as the influence and correlation of several factors are required.

최근 기후변화에 따른 지구온난화는 전세계적으로 매우 큰 문제로 인식되고 있다. 이산화탄소의 농도, 온난화정도, 토양 온도, 강우량, 토양수분함량, 탈질작용 등과 같은 요인들은 토양으로부터 아산화질소 ($N_2O$)의 방출에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 산지습지인 오대산 질뫼늪과 정족산 무체치늪 토양으로부터 온도변화에 따른 $N_2O$ 발생을 조사하였다. 7월 채취한 질뫼늪 토양은 온도가 증가함에 따라 $N_2O$ 발생이 증가하였으나 $10^{\circ}C$에서는 유의한 차이를 보이지 않았다. $15^{\circ}C$$20^{\circ}C$ 토양은 24시간까지는 증가하는 $N_2O$ 발생양상을 보였으나 그 이후 발생량의 뚜렷한 차이를 보이지 않았다, 전반적으로 온도처리에 따른 유의한 차이만을 보였다. 무제치늪 토양 또한 질뫼늪 토양과 유사한 경향을 보였다. 부가적인 질소원 처리에 대해 두 습지 토양은 다소 증가하는 양상을 보였으나 질소부가나 질소원에 따른 유의한 차이를 보이지 않았다. 결론적으로 이탄토양으로부터 배출하는 $N_2O$의 양은 온도가 상승함에 따라 증가되는 양상을 보였으나 질소원의 종류와 부가량은 $N_2O$ 배출 양상에 큰 차이를 보이지 않은 것으로 조사되었다. 향후 산지 이탄습지 토양의 $N_2O$ 배출양상을 보다 명확히 규명하기 위해서는 질소원의 차이, 질소의 시비, 토양효소 활성이나 질화세균의 활동성을 포함하여 다양한 요인에 대한 복합적인 연구가 진행될 필요가 있을 것이다.

Keywords

References

  1. Basiliko, N. and J.B. Yavitt. 2001. Influence of Ni, Co, Fe and Na additions on methane production in Sphagnum dominated Northern American peatlands. Biogeochemistry 52: 133-153. https://doi.org/10.1023/A:1006461803585
  2. Bellisario, L.M., J.L. Bubier, T.R. Moore and J.P. Chanton. 1999. Controls on $CH_4$ emissions from a northern peatland. Global Biogeochemical Cycles 13: 81-91. https://doi.org/10.1029/1998GB900021
  3. Bubier, J.L. 1995. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. Journal of Ecology 83: 403-420. https://doi.org/10.2307/2261594
  4. Cantarel, A.M., M.G. Bloor, N. Deltroy and J.F. Soussana. 2011. Effects of climate change drivers on nitrous oxide fluxes in an upland temperate grassland. Ecosystems. 14: 223-233. https://doi.org/10.1007/s10021-010-9405-7
  5. Carter, M.S., K.S. Larsen, B. Emmett, M. Estiarte, C. Field, I.D. Leith, M. Lund, A. Meijide, R.T.E. Mills, U. Niinemets, J. Penuelas, M. Portillo-Estrada, I.K. Schmidt, M.B. Selsted, L.J. Sheppard, A. Sowerby, A. Tietema and C. Beier. 2012. Synthesizing greenhouse gas fluxes across nine European peatlands and shrublands - responses to climatic and environmental changes. Biogeosciences 9: 3739-3755.
  6. Carter, M.S., P. Ambus, K.R. Albert, K.S. Larsen, M. Andersson, A. Prieme, L. Linden and C. Beier. 2011. Effects of elevated atmospheric $CO_2$, prolonged summer drought and temperature increase on $N_2O$ and $CH_4$ fluxes in a temperate heathland. Soil Biology & Biochemistry 43: 1660-1670. https://doi.org/10.1016/j.soilbio.2011.04.003
  7. Coles, J.R.P. and J.B. Yavitt. 2002. Control of methane metabolism in a forested northern wetland, New York State, by aeration, substrates, and peat size fractions. Geomicrobiology Journal 19: 293-315. https://doi.org/10.1080/01490450290098397
  8. Crill, P.M., K.B. Bartlett, R.C. Harriss, E. Gorham, E.S. Verry, D.I. Sebacher, L. Mazdar and W. Sanner. 1988. Methane flux from Minnesota peatlands. Global Biogeochemical Cycles 2: 371-384. https://doi.org/10.1029/GB002i004p00371
  9. Dedysh, S.N. 2002. Methanotrophic bacteria of acidic Sphagnum peat bogs. Microbiology 71: 638-650. https://doi.org/10.1023/A:1021467520274
  10. Dise, N.B. 1993. Methane emission from Minnesota peatlands: Spatial and seasonal variability. Global Biogeochemical Cycles 7: 123-142. https://doi.org/10.1029/92GB02299
  11. Dunfield, P., R. Knowles, R. Dumont, T.R. Moore. 1993. Methane production and consumption in temperate and subarctic peat soils: Response to temperature and pH. Soil Biology and Biochemistry 25: 321-326. https://doi.org/10.1016/0038-0717(93)90130-4
  12. Fechner-Levy, E.J. and H.F. Hemond. 1996. Trapped methane volume and potential effects on methane ebullition in a northern peatland. Limnology and Oceanogrphy 41: 1375-1383. https://doi.org/10.4319/lo.1996.41.7.1375
  13. Frency, J.R. 1997. Emission of nitrous from soils used for agriculture. Nutrient Cycling in Agreecosystems 49: 1-6. https://doi.org/10.1023/A:1009702832489
  14. Garcia, J.L., B.K.C. Patel and B. Ollivier. 2000. Taxonomic, phylogenetic and ecological diversity of methanogenic Archaea. Anaerobe 6: 205-226. https://doi.org/10.1006/anae.2000.0345
  15. Gro$\beta$e, W. 1996. The mechanism of thermal transpiration (=thermal osmosis). Aquatic Botany 54: 101-110. https://doi.org/10.1016/0304-3770(96)01038-8
  16. Hanson, R.S. and T.E. Hanson. 1996. Methanotrophic bacteria. Microbiological Reviews 60: 439-471.
  17. Hellebrand, H.J., V. Scholz and J. Kern. 2008. Fertilizer induced nitrous oxide emissions during energy crop cultivation on loamy sand soils. Atmospheric Environment 42: 8403-8411. https://doi.org/10.1016/j.atmosenv.2008.08.006
  18. Hyvoenen, N.P., J.T. Huttunen, N.J. Shurpali, N.M. Tavi, M.E. Repo and P.J. Martikainen. 2009. Fluxes of nitrous oxide and methane on an abandoned peat extraction site: Effect of reed canary grass cultivation. Bioresource Technology 100: 4723-4730. https://doi.org/10.1016/j.biortech.2009.04.043
  19. Ineson, P., P.A. Coward and U.A. Hartwig. 1998. Soil gas fluxes of $N_2O$, $CH_4$ and $CO_2$ beneath Lolium perenne under elevated $CO_2$: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil 198: 89-95. https://doi.org/10.1023/A:1004298309606
  20. IPCC. 2007. Climate change 2007: synthesis report. contribution of working groups I. II and III to the fourth assessment. p. 104. In: Core Wrighting Team (Pachauri, R.K. and A. Reisinger, eds.). Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland.
  21. Joabsson, A., T.R. Christensen and B. Wallen. 1999. Vascular plant controls on methane emissions from northern peatforming wetlands. Trends in Ecology and Evoltion 14: 385-388. https://doi.org/10.1016/S0169-5347(99)01649-3
  22. Kamal, S. and A. Varma. 2008. Peatland microbiology. pp. 177-203. In: Microbiology of Extreme Soils. Soil Biology 13. (Dion, P. and C.S. Nautiyal, eds.). Springer-Verlag, Berlin Heidelberg.
  23. Kanerva, T., K. Regina, K. Ramo, K. Ojanpera and S. Manninen. 2007. Fluxes of $N_2O$, $CH_4$ and $CO_2$ in a meadow ecosystem exposed to elevated ozone and carbon dioxide for three years. Environmental Pollution 145: 818-828. https://doi.org/10.1016/j.envpol.2006.03.055
  24. Kang, H., C. Freeman and T.W. Ashendon. 2001. Effects of elevated $CO_2$ on fen peat biogeochemistry. Scince of the Total Environment 279: 45-50. https://doi.org/10.1016/S0048-9697(01)00724-0
  25. Kettunen, A., V. Kaitala, J. Alm, J. Silvola, H. Nykänenand and P.J. Martikainen. 1996. Cross-correlation analysis of the dynamics of methane emissions from a boreal peatland. Global Biogeochemical Cycles 10: 457-471. https://doi.org/10.1029/96GB01609
  26. Kim, J.G. 2009. Ecological Characteristics of Sphagnum fens in Mt. Odae: I. Sowhangbyungsan-neup. Journal of Wetlands Research 11: 15-27
  27. Maag, M. and F.P. Vinther. 1996. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology 4: 5-14. https://doi.org/10.1016/0929-1393(96)00106-0
  28. Moore, T.R., A. Heyes and N.T. Roulet. 1994. Methane emissions from wetlands, southern Hudson Bay lowland. Journal of Geophysical Research 99: 1455-1467. https://doi.org/10.1029/93JD02457
  29. Morrissey, L.A. and G.P. Livingston. 1992. Methane emissions from Alaska Arctic tundra: An assessment of local spatial variability. Journal of Geophysical Research 97D: 16661-16670.
  30. Pannikov, N.S. and S.N. Dedysh. 2000. Cold season $CH_4$ and $CO_2$ emission from boreal peat bogs (West Siberia): Winter fluxes and thaw activation dynamics. Global Biogeochemical Cycles 14: 1071-1080. https://doi.org/10.1029/1999GB900097
  31. Parton, W.J., A.R. Mosier, D.S. Ojima, D.W. Valentine, D.S. Schimel, K. Weier and A.E. Kulmala. 1996. Generalized model for $N_2$ and $N_2O$ production from nitrification and denitrification. Global Biochemical Cycles 10: 401-412. https://doi.org/10.1029/96GB01455
  32. Parton, W.J., E.A. Holland, S.J. Del Grosso, M.D. Hartman, R.E. Martin, A.R. Mosier, D.S. Ojima and D.S. Schimel. 2001. Generalized model for $NO_x$ and $N_2O$ emissions from soils. Journal of Geophysical Research 106: 17,403- 17,419.
  33. Pelletier, L., T.R. Moore, N.T. Roulet, M. Garneau and V. Beaulieu-Audy. 2007. Methane fluxes from three peatlands in the La Grande Riviere watershed, James Bay lowland, Canada. Journal of Geophysical Research 112: G01018.
  34. Scheutz, C. and P. Kjeldsen. 2004. Environmental factors influencing attenuation of menthane and hydrochlorofluorocarbons in landfill cover soils. Journal of Environmental Quality 33: 72-79. https://doi.org/10.2134/jeq2004.7200
  35. Segers, R. 1998. Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry 41: 23-51. https://doi.org/10.1023/A:1005929032764
  36. Smith, K.A., H. Clayton, I.P. McTaggart, P.E. Thomson, J.R.M. Arah, A. Scott, K.W.T. Goulding, J.L. Monteith, and V.R. Phillips. 2012. The Measurement of Nitrous Oxide Emissions from Soil by Using Chamber. The Royal Society 351: 327-338.
  37. Treat, C.C., J.L. Bubier, R.K. Varner and P.M. Crill. 2007. Time scale dependence of environmental and plantmediated controls on $CH_4$ flux in a temperate fen. Journal of Geophysical Research 112: G01014.
  38. Tsuyuzaki, S. 1997. Wetland development in the early stages of volcanic succession. Journal of Vegetation Science 8: 353-360. https://doi.org/10.2307/3237324
  39. Valentine, D.W., E.A. Holland and D.S. Schimel. 1994. Ecosystem and physiological controls over methane production in northern wetlands. Journal of Geophysical Research 99: 1563-1571. https://doi.org/10.1029/93JD00391
  40. Waddington, J.M., N.T. Roulet and R.V. Swanson. 1996. Water table control of $CH_4$ emission enhancement by vascular plants in boreal peatlands. Journal of Geophysical Research 101: 22775-22785. https://doi.org/10.1029/96JD02014
  41. Wrage, N., G.L. Velthof, M.L. Beusichem van and O. Oenema. 2001. Role of nitrifier Time scale dependence of environmental and plantmediated controls on $CH_4$ flux in a temperate fen denitrification in the production of nitrous oxide. Soil Biology & Biochemistry 33: 1723-1732. https://doi.org/10.1016/S0038-0717(01)00096-7
  42. Wu, X., Z. Yao, N. Bruggemann, Z.Y. Shen, B. Wolf, M. Dannenmann, X. Zheng and K. Butterbach-Bahl. 2010. Effects of soil moisture and temperature on $CO_2$ and $CH_4$ soil-atmosphere exchange of various land use/cover types in a semi-arid grassland in Inner Mongolia, China. Soil Biology & Biochemistry 42: 773-787. https://doi.org/10.1016/j.soilbio.2010.01.013
  43. Xu, Z., H. Ouyang, C. Cao, Z. Pei and C. Zhou. 2004. Nitrogen deposition and carbon sequestration in alpine meadows. Biogeochemistry 71: 353-369. https://doi.org/10.1007/s10533-004-0371-z