References
- Castro AJ, Barbosa-Canovas GV, Swanson BG. Microbial inactivation of foods by pulsed electric fields. J. Food Process. Pres. 17: 47-73 (1993) https://doi.org/10.1111/j.1745-4549.1993.tb00225.x
- Qin BL, Pothakamury UR, Vega H, Martin O, Barbosa-Canovas GC, Swanson BG. Food pasteurization using high-intensity pulsed electric fields. Food Technol.-Chicago 49: 55-60 (1995)
- Leistner G, Gorris LGM. Food preservation by combined processes. FLAIR Final Report, EUR 15576 EN, 100 pp. Brussels: European Commission, DG (1994)
- Monfort S, Saldana G, Condon S, Raso J, Alvarez I. Inactivation of Salmonella spp. in liquid whole egg using pulsed electric fields, heat, and additives. Food Microbiol. 30: 393-399 (2012) https://doi.org/10.1016/j.fm.2012.01.004
- Zhu Z, Bals O, Grimi N, Ding L, Vorobiev E. Qualitative characteristics and dead-end ultrafiltration of chicory juice obtained from pulsed electric field treated chicories. Ind. Crop. Prod. 46: 8-14 (2013) https://doi.org/10.1016/j.indcrop.2013.01.014
- Puertolas E, Cregenzan O, Luengo E, Alvarez I, Raso J. Pulsed electric field assisted extraction of anthocyanins from purplefleshe potato. Food Chem. 136: 1330-1336 (2013) https://doi.org/10.1016/j.foodchem.2012.09.080
- Mhemdi H, Grimi N, Bals O, Lebovka NI, Vorobiev E. Effect of apparent density of sliced food particles on the efficiency of pulsed electric field treatment. Innov. Food Sci. Emerg. 18: 115-119 (2013) https://doi.org/10.1016/j.ifset.2012.12.008
- Turk MF, Vorobiev E, Baron A. Improving apple jucie expression and quality by pulsed electric field on an industrial scale. LWTFood Sci. Technol. 49: 245-250 (2012)
- Knorr D, Geulen M, Grahl T, Sitzmann W. Food application of high electric field pulses. Trend. Food Sci. Tech. 5: 71-75 (1994) https://doi.org/10.1016/0924-2244(94)90240-2
- Pothakamury UR. Preservation of food by nonthermal processes. PhD thesis, Washington State University, Pullman, WA, USA (1995)
- Harrison SL. High intensity pulsed electric field and high hydrostatic pressure processing of apple juice. PhD thesis, Washington State University, Pullman, WA, USA (1996)
- Zimmermann U, Pilwat G, Riemann F. Dielectric breakdown of cell membranes. Biophys. J. 14: 881-899 (1974) https://doi.org/10.1016/S0006-3495(74)85956-4
- Marx G, Moody A, Bermudez-Aguirre D. A comparative study on the structure of Saccharomyces cerevisiae under nonthermal technologies: High hydrostatic pressure, pulsed electric fields and thermo-sonication. Int. J. Food Microbiol. 151: 327-337 (2011) https://doi.org/10.1016/j.ijfoodmicro.2011.09.027
- Gallo LI, Pilosof AMR, Jagus RJ. Effect of the sequence of nisin and pulsed electric fields treatments and mechanisms involved in the inactivation of Listeria innocua in whey. J. Food Eng. 79: 188-193 (2007) https://doi.org/10.1016/j.jfoodeng.2006.01.043
- Delorme E. Transformation of Saccharomyces cerevisiae by electroporation. Appl. Environ. Microb. 55: 2242-2246 (1989)
- Calderon-Miranda ML, Barbosa-Canovas GV, Swanson BG. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed mil. Int. J. Food Microbiol. 51: 31-38 (1999) https://doi.org/10.1016/S0168-1605(99)00071-9
- Slavik J. Intracellular pH of yeast cells measured with fluorescent probe. FEBS Lett. 140: 22-26 (1982) https://doi.org/10.1016/0014-5793(82)80512-7
- Bender GR, Marquis RE. Membrane ATPases and acid tolerance of Actinomyces viscous and Lactobacillus casei. Appl. Environ. Microb. 53: 2124-2128 (1987)
-
Hong SI, Pyun YR. Membrance damage and enzyme inactivation of Lactobacillus plantarum by high pressure
$CO_{2}$ treatment. Int. J. Food Microbiol. 63: 19-28 (2001) https://doi.org/10.1016/S0168-1605(00)00393-7 - Bender GR, Sutton SVW, Marquis RE. Acid tolerance, proton permeabilities and membrane ATPases of oral streptococci. Infect. Immun. 53: 331-338 (1986)
- Poole RK. The isolation of membranes from bacteria. vol. 19, pp. 109-122. In: Biomembrane Protocols. Graham J, Higgins J (eds). Humana Press Inc., New York, NY, USA (1993)
- Simpson RK, Whittington R, Earnshaw RG, Russell NJ. Pulsed high electric field causes 'all or nothing' membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target. Int. J. Food Microbiol. 48: 1-10 (1999) https://doi.org/10.1016/S0168-1605(99)00022-7
- Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 66: 375-400 (1925)
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275 (1951)
- Markwell MAK, Hass SM, Bieber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210 (1978) https://doi.org/10.1016/0003-2697(78)90586-9
- Humble MW, King A, Phillips I. APIZYM: a simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol. 30: 275-277 (1977) https://doi.org/10.1136/jcp.30.3.275
- Przybylski KS, Witter LD. Injury and recovery of Escherichia coli after sublethal acidification. Appl. Environ. Microb. 37: 261-265 (1979)
- Iandolo JJ, Ordal ZJ. Repair of thermal injury of Staphylococcus aureus. J. Bacteriol. 91: 134-142 (1966)
- Hurst A. Bacterial injury: A review. Can. J. Microbiol. 23: 935-944 (1977) https://doi.org/10.1139/m77-139
- Shin JK, Pyun YR. Inactivation of Lactobacillus plantarum by pulsed microwave irradiation. J. Food Sci. 62: 163-166 (1997) https://doi.org/10.1111/j.1365-2621.1997.tb04391.x
- Mitchell P. Moyle J. Osmotic structure and function in bacteria. Symp. Soc. Gen. Microbiol. 6: 150-180 (1956)
- Pina-Perez MC, Rodrigo D, Lopez AM. Sub-lethal damage in Cronobacter sakazakii subsp. sakazakii cells after different pulsed electric field treatments in infant formula milk. Food Control 20: 1145-1150 (2009) https://doi.org/10.1016/j.foodcont.2009.03.006
- Zhao W, Yang R, Shen X, Zhang S, Chen X. Lethal and sublethal injury and kinetics of Escherichia coli, Listeria monocytogenes and Staphylococcus aureus in milk by pulsed electric fields. Food Control 32: 6-12 (2013) https://doi.org/10.1016/j.foodcont.2012.11.029
- Rozes N, Peres C. Effect of oleuropein and sodium chloride on viability and metabolism of Lactobacillus plantarum. Appl. Microbiol. Biotechnol. 45: 839-843 (1996) https://doi.org/10.1007/s002530050771
- Dreyfuss HS, Chipley JR. Comparison of effects of sublethal microwave radiation and conventional heating on the metabolic activity of Staphylococcus aureus. Appl. Environ. Microb. 39: 13-16 (1980)
- Garcia MJ, Rios G, Ali R, Belles JM, Serrano R. Comparative physiology of sal tolerance in Candida tropicalis and Saccharomyces cerevisiae. Microbiology 143: 1125-1131 (1997) https://doi.org/10.1099/00221287-143-4-1125
- Mendoza I, Rubio F, Rodriguez-Navarro A, Pardo JM. The protein phosphatase calcineurin is essential for NaCl tolerance of Saccharomyces cerevisiae. J. Biol. Chem. 296: 8792-8796 (1994)
- Somolinos M, Manas P, Condon S, Pagan R, Garcia D. Recovery of Saccharomyces cerevisiae sublethally injured cells after pulsed electric fields. Int. J. Food Microbiol. 125: 352-356 (2008) https://doi.org/10.1016/j.ijfoodmicro.2008.04.023
- Khalil H, Villota R. Comparative study on injury and recovery of Staphylococcus aureus using microwaves and conventional heating. J. Food Protect. 51: 181-186 (1988)
- Hong SI. Inactivation of Lactobacillus plantarum by high pressure carbon dioxide. PhD thesis, Yonsei University, Seoul, Korea (1997)
- Albert SG. Biochemical aspects of yeasts. pp. 33-46. In: Yeast Technology. Reed G, Peppler HJ (eds). Westport, CN, USA (1973)
- Poolman B. Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125-147 (1993) https://doi.org/10.1111/j.1574-6976.1993.tb00015.x
- Tanino T, Sato S, Oshige M, Ohshima T. Analysis of the stress response of yeast Saccharomyces cerevisiae toward pulsed electric field. J. Electrostat. 70: 212-216 (2012) https://doi.org/10.1016/j.elstat.2012.01.003
- Foster JW, Cowan RM, Magg TA. Rupture of bacteria by explosive decompression. J. Bacteriol. 83: 330-334 (1962)
- Jung S, Lowe SE, Hollingsworth RI, Zeikus JG. Sarcina ventriculi synthesizes very long chain dicarboxylic acids in response to different forms of environmental stress. J. Biol. Chem. 268: 2828-2835 (1993)
- Booth IR. Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49: 359-378 (1985)
- Kobayashi H, Suzuki T, Unemoto T. Streptococcal cytoplasmic pH is regulated by changes in amount and activity of a proton translocating ATPase. J. Biol. Chem. 261: 627-630 (1986)
- Kashket ER. Bioenergetics of lactic acid bacteria: cytoplasmic pH and osmotolerence. FEMS Microbiol. Lett. 46: 233-244 (1987) https://doi.org/10.1111/j.1574-6968.1987.tb02463.x
- Hutkins RW, Nannen NL. pH homeostasis in lactic acid bacteria. J. Dairy Sci. 76: 2354-2365 (1993) https://doi.org/10.3168/jds.S0022-0302(93)77573-6
-
Futai M, Kanazawa H. Structure and function of proton-traslocating adenosine triphosphatase (
$F_{0}F_{1}$ ) biochemical and molecular biological approaches. Microbiol. Rev. 47: 285-312 (1983) -
Schneider E, Altendorf K. Bacterial adenosine 5'-triphosphate synthase (
$F_{0}F_{1}$ ): purification and reconstitution of$F_{0}$ complexs and biochemical and functional characterization of their subunits. Microbiol. Rev. 51: 477-497 (1987) - Zhao W, Yang R, Zhang HQ. Recent advances in the action of pulsed electric fields on enzymes and food component proteins. Trends Food Sci. Tech. 27: 83-96 (2012) https://doi.org/10.1016/j.tifs.2012.05.007
- Ho SY, Mittal GS, Cross JD. Effects of high field electric pulses on the activity of selected enzymes. J. Food Eng. 31: 69-84 (1997) https://doi.org/10.1016/S0260-8774(96)00052-0
- Shin JK. Inactivation of Saccharmyces cerevisiae by high voltage pulsed electric fields treatment. PhD thesis, Yonsei University, Seoul, Korea (2000)
- Shin JK. Nonthermal sterilization of foods using high power electrical energy (D10-3). In: 2013 Annual Meeting of Korean Society of Food Science and Technology. August 28-30, Cheonan Art Center, Cheonan, Korea. The Korean Society of Food Science and Technology, Seoul, Korea (2013)