DOI QR코드

DOI QR Code

Study on Self-Healing Asphalt Containing Microcapsule

마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구

  • Kwon, Young-Jin (Department of Polymer Engineering, The University of Suwon) ;
  • Hong, Young-Keun (Department of Polymer Engineering, The University of Suwon)
  • 권영진 (수원대학교 신소재공학과) ;
  • 홍영근 (수원대학교 신소재공학과)
  • Received : 2013.07.19
  • Accepted : 2013.08.12
  • Published : 2013.09.30

Abstract

Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact strength of microcapsule-contained asphalt was getting higher than that of asphalt without the microcapsule. As the rest time of 15 days passed, the original strength was restored. This tells that microcapsule-contained asphalt had the ability of self-healing. X-ray photos proved that DMP on asphalt fracture surface, which were burst out of the microcapsules when cracks occurred on asphalt, were polymerized to polyphenyleneoxide and this PPO covered the crack and healed the damage.

자기치유형 아스팔트를 구현하기 위하여 치유제로 디메틸페놀을 사용하여 내부층을 이루고 바깥층이 멜라민 수지로 이루어진 마이크로켑슐을 제조하였다. 마이크로캡슐이 내재된 아스팔트는 일반 아스팔트에 비해 높은 기계적 성질을 나타내었다. 그대로 길어질수록 마이크로캡슐이 함유된 아스팔트는 함유되지 않은 아스팔트보다 더 높은 충격 강도를 나타내었으며 15일의 휴식기간에 최초의 물성을 회복하였다. 이는 X-선 사진에서 보듯이, 깨어진 아스팔트 경계면에 있던 마이크로캡슐이 아스팔트와 동시에 깨지면서 캡슐 안에 있던 단량체인 디메틸페놀이 흘러나와 외부의 반응촉매 투입 없이 아스팔트 자체의 금속촉매와 아민촉매 및 공기 중의 산소분자에 의하여 열가소성 고강성 플라스틱 고분자인 폴리페닐렌옥사이드가 자율적으로 중합되면서 깨어진 아스팔트의 경계면을 메우면서 최초의 물성으로 복구된 것이다. 이는 마이크로캡슐을 함유한 아스팔트는 자가복구능을 갖고 있음을 의미한다.

Keywords

References

  1. Top 10 Most Promising Technology Trends 2013, from the World Economic Forum, Google, posted Feb 14, 2013.
  2. Self-healing Material, Wikipedia.
  3. J. H. Collins and M. G. Bouldin, "Long and Short Term Stability of Straight and Polymer Modified Asphalts", Rubber World, 206, 32 (1992).
  4. X. Lu and U. Isacsson, "Compatibility and Storage Stability of SBS Copolymer Modified Bitumen", Mater. Struct., 30, 618 (1997). https://doi.org/10.1007/BF02486904
  5. P. Jew, J. A. Shimizu, M. Svazic and R. T. Woodhams, "Polyethylene-Modified Bitumen for Paving Applications", J. Appl. Polym. Sci., 31, 2685 (1986). https://doi.org/10.1002/app.1986.070310824
  6. O. Gonzalez, M. E. Munoz, A. Santamaria, M. Garcia-Morales, F. J. Navarro, and P. Partal, "Rheology and Stability of Bitumen/EVA blends", Eur. Polym. J., 40, 2365 (2004). https://doi.org/10.1016/j.eurpolymj.2004.06.001
  7. G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, "Asphalt Modification with Different Polyethylene-Based Polymers", Eur. Polym. J., 41, 2831 (2005). https://doi.org/10.1016/j.eurpolymj.2005.05.034
  8. G. Wen, Y. Zhang, Y. Zhang, K. Sun, and Z. Chen, "Vulcanization Characteristics of Asphalt/SBS Blends in the Presence of Sulfur", J. Appl. Polym. Sci., 82, 989 (2001). https://doi.org/10.1002/app.1932
  9. J. S. Chen and C. C. Huang, "Fundamental Characterization of SBS-modified Asphalt Mixed with Sulfur", J. Appl. Polym. Sci., 103, 2817 (2007). https://doi.org/10.1002/app.24621
  10. A. Adedeji, T. Grunfelder, F. S. Bates, and C. W. Macosko, "Asphalt Modified by SBS Triblock Copolymer: Structures and Properties", Polym. Eng. Sci., 36, 1707 (1996). https://doi.org/10.1002/pen.10567
  11. Z. Li and J. Wu, "Potential Distribution Theorem of the Polymer-induced depletion between Colloidal Particles", J. Chem. Phys., 126, 144904 (2007). https://doi.org/10.1063/1.2715595
  12. C. Gogelein, G. Nagele, J. Buitenhuis, R. Tuinier, and J. K. G. Dhont, "Polymer Depletion-driven Cluster Aggregation and Initial Phase Separation in Charged Nanosized Colloids", J. Chem. Phys., 130, 204905 (2009). https://doi.org/10.1063/1.3141984
  13. S. Ramakrishnan, M. Fuchs, K.S. Schweizer, and C.F. Zukoski, "Entropy-driven Phase Transitions in Colloid-Polymer Suspensions", J. Chem. Phys., 116, 2201 (2002). https://doi.org/10.1063/1.1426413
  14. J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanoparticles to Create Self-healing Composites", J. Chem. Phys., 1121, 5531 (2004).
  15. S. Tyagi, J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanocomposite Coating to Heal Surface Defects", Macromolecules, 37, 9160 (2004). https://doi.org/10.1021/ma048773l
  16. J. Y. Lee, Q. L. Zhang, T. Emricksas, and A. J. Crosby, "Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites", Macromolecules, 39, 7392 (2006). https://doi.org/10.1021/ma061210k
  17. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic Healing of Polymer Composites", Nature, 409, 794 (2001). https://doi.org/10.1038/35057232
  18. E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, "In-situ Poly(urea-formaldehyde) Microencapsulation of Dicyclopentadiene", J. Microencapsulation, 20, 719 (2003). https://doi.org/10.3109/02652040309178083
  19. E. N. Brown, S. R. White, and N. R. Sottos, "Microcapsule Induced Toughening in a Self-healing Polymer Composite", J. Mater. Sci., 39, 1703 (2004). https://doi.org/10.1023/B:JMSC.0000016173.73733.dc
  20. J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White, and J. S. Moore, "Wax-protected Catalyst Microsheres for Efficient Self-healing Materials," Adv. Mater., 17, 205 (2005). https://doi.org/10.1002/adma.200400607
  21. S. H. Cho, S.R. White, and P.V. Braun, "Self-Healing Polymer Coatings", Adv. Mater.. 21, 645 (2009). https://doi.org/10.1002/adma.200802008
  22. C. M. Dry, "Self-repairing, Reinforced Matrix Materials", USP 7022179 (2006).
  23. J. W. C. Pang and I. P. Bond, "A Hollow Fibre Reinforced Polymer Composite Encompassing Self-healing and Enhanced Damage Visibility", Compos. Sci Technol., 65, 1791 (2005). https://doi.org/10.1016/j.compscitech.2005.03.008
  24. R. S. Trask and I. P. Bond, "Biomimetic Self-healing of Advanced Composite Structures using Hollow Glass Fibres", Smart Mater. Struct., 15, 704 (2006). https://doi.org/10.1088/0964-1726/15/3/005
  25. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, "A Thermally Re-mendable Cross-linked Polymeric Material", Science, 295, 1698 (2002). https://doi.org/10.1126/science.1065879
  26. F. Wudl, X. Chen, USP 2004014933 (2004).
  27. Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-linked Polyamides with High Toughness and Self-repairing Ability from Maleimide- and Furan- functionalized Aromatic Polyamides", Macromol. Chem. Phys., 208, 224 (2007). https://doi.org/10.1002/macp.200600445
  28. Y. L. Liu and C. Y. Hsieh, "Crosslinked Epoxy Materials Exhibiting Thermal Remendability and Removability from Multifunctional Maleimide and Furan Compounds", J. Polym. Sci.: Part A: Polym. Chem., 44, 905 (2004).
  29. E. B. Murphy, E. Bolanos, C. S. Hamann, F. Wudl, S. R. Nutt, and M. L. Auad, "Synthesis and Characterization of a Single-component Thermally Remendable Polymer Network", Macromolecules, 41, 5203 (2008). https://doi.org/10.1021/ma800432g
  30. J. S. Park, K. Takahashi, Z. Guo, Y. Wang, et al., "Towards Development of a Self-healing Composite using a Mendable Polymer and Resistive Heating", J. Compos. Mater., 42, 2869 (2008). https://doi.org/10.1177/0021998308097280
  31. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, "Self-healing and Thermoreversible Rubber from Supramolecular Assembly", Nature, 451, 977 (2008). https://doi.org/10.1038/nature06669
  32. K. P. Nair, V. Breedveld, and M. Weck, "Complementary Hydrogen-bonded Thermoreversible Polymer Networks with Tunable Properties", Macromolecules, 41, 3429 (2008). https://doi.org/10.1021/ma800279w
  33. L. L. Freitas and R. Stadler, "Thermoplastic Elastomers by Hydrogen Bonding. 3", Macromolecules, 20, 2478 (1987). https://doi.org/10.1021/ma00176a027
  34. F. R. Kersey, D. M. Loveless, and S. L. Craig, "A Hybrid Polymer Gel with Controlled Rates of Cross-link Rupture and Self-repair", J. Royal Soc. Interface, 4, 373 (2007). https://doi.org/10.1098/rsif.2006.0187
  35. A. S. Hay, "Polymerization by Oxidative Coupling: Discovery and Commercialization of PPO and Noryl Resins", J. Polym. Sci.: Part A: Polym. Chem., 36, 505 (1998). https://doi.org/10.1002/(SICI)1099-0518(199803)36:4<505::AID-POLA1>3.0.CO;2-O
  36. J. Read and D. Whiteoak, "The Shell Bitumen Handbook", Shell, London (2003).
  37. S. Y. Lee, S. H. Mun, and Y. K. Hong, "Modification of Asphalt by in-situ Polymerization", Elast. Compos., 46, 257 (2011).
  38. F. E. Karasz and J. M. O'Reilly, "Thermal Properties of Poly(2,6-dimethyl phenylene ether)", J. Polym. Sci., Part B: Polym. Lett., 3, 561 (1965). https://doi.org/10.1002/pol.1965.110030708
  39. W. A. Butte, C. C. Price, and R. E. Hughes, "Crystalline Poly(2,6-zylenol)", J. Polym. Sci., 61, S28 (1962). https://doi.org/10.1002/pol.1962.1206117137