DOI QR코드

DOI QR Code

On the drying out of bipolar membranes

  • Kedem, Ora (Weizmann Institute of Science) ;
  • Ghermandi, Andrea (Dept. of Natural Resources and Environmental Management, University of Haifa) ;
  • Messalem, Rami (Zuckerberg Inst. for Water Research, Ben Gurion University of the Negev)
  • Received : 2012.06.30
  • Accepted : 2013.05.14
  • Published : 2013.07.25

Abstract

The maximum current density that can be achieved in bipolar membrane electrodialysis is limited by the sharp increase in resistance that is experienced when the water content at the membrane interface is not adequately replenished and the membranes dry out. In this paper we show how the water content near the interface depends on the properties of the membranes. A water retaining parameter is introduced, which characterizes the thermodynamic properties of the membrane material and may be used to guide the choice of polymers for mitigation of the dry-out problem.

Keywords

Acknowledgement

Grant : Advanced bipolar membrane processes for highly saline waste water

Supported by : European Commission

References

  1. Aritomi, T., van den Boomgaard, T. and Strathmann, H. (1996), "Current-voltage curve of a bipolar membrane at high current density", Desalination, 104(1-2), 13-18. https://doi.org/10.1016/0011-9164(96)00021-5
  2. Balster, J. (2006), "Membrane module and process development for monopolar and bipolar membrane electrodialysis", Ph.D. Dissertation, University of Twente, The Netherlands.
  3. Balster, J., Sumbharaju, R., Srikantharajah, S., Punt, I., Stamatialis, D.F., Jordan, V. and Wessling, M. (2007), "Asymmetric bipolar membrane: A tool to improve product purity", J. Membr. Sci., 287(2), 246-256. https://doi.org/10.1016/j.memsci.2006.10.042
  4. Huang, C. and Xu, T. (2006), "Electrodialysis with bipolar membranes for sustainable development", Environ. Sci. Technol., 40(17), 5233-5243. https://doi.org/10.1021/es060039p
  5. Kedem, O. and Freger, V. (2008), "Determination of concentration-dependent transport coefficients in nanofiltration: Defining an optimal set of coefficients", J. Membr. Sci., 310(1-2), 586-593. https://doi.org/10.1016/j.memsci.2007.11.045
  6. Kreuer, K., Schuster, M., Obliers, B., Diat, O., Traub, U., Fuchs, A., Klock, U., Paddison, S. and Maier, J. (2008), "Short-side-chain proton conducting perfluorosulfonic acid ionomers: Why they perform better in PEM fuel cells", J. Power Sources, 178(2), 499-509. https://doi.org/10.1016/j.jpowsour.2007.11.011
  7. Krol, J.J., Jansink, M., Wessling, M. and Strathmann, H. (1998), "Behaviour of bipolar membranes at high current density Water diffusion limitation", Sep. Purif. Technol., 14(1-3), 41-52. https://doi.org/10.1016/S1383-5866(98)00058-6
  8. Narebska, A., Koter, S. and Kujawski, W. (1985), "Irreversible thermodynamics of transport across charged membranes: Part I -- Macroscopic resistance coefficients for a system with nafion 120 membrane", J. Membr. Sci., 25(2), 153-170. https://doi.org/10.1016/S0376-7388(00)80248-3
  9. Spiegler, K. (1958), "Transport processes in ionic membranes", Tr. Farad. Soc., 54, 1408-1428. https://doi.org/10.1039/tf9585401408
  10. Xu, T. (2005), "Ion exchange membranes: State of their development and perspective", J. Membr. Sci., 263, 1-29. https://doi.org/10.1016/j.memsci.2005.05.002

Cited by

  1. New bipolar membrane setup for high current densities vol.56, pp.6, 2015, https://doi.org/10.1080/19443994.2014.950339