DOI QR코드

DOI QR Code

대량용해 Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 수소저장합금의 용융방사공정을 통한 수소저장특성

Effect of Melt-Spinning Process on Hydrogen Storage Properties of Mass-Produced Ti0.85Zr0.13(Fex-V)0.56Mn1.47Ni0.05 Alloy

  • 김진호 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원)
  • Kim, Jinho (Korea Institute of Ceramic Engineering & Technology) ;
  • Han, Kyusung (Korea Institute of Ceramic Engineering & Technology)
  • 투고 : 2013.09.30
  • 심사 : 2013.10.31
  • 발행 : 2013.10.31

초록

Hydrogen storage as a metal hydride is the most promising alternative because of its relatively large hydrogen storage capacities near room temperature. TiMn2-based C14 Laves phases alloys are one of the promising hydrogen storage materials with easy activation, good hydriding-dehydriding kinetics, high hydrogen storage capacity and relatively low cost. In this work, multi-component, hyper-stoichiometric $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ C14 Laves phase alloys were prepared by a vacuum induction melting for a hydrogen storage tank. Since pure vanadium (V) is quite expensive, the substitution of the V element in these alloys has been tried and some interesting results were achieved by replacing V by commercial ferrovanadium (FeV) raw material. In addition, the melt-spinning process, which was applied to the manufacturing of some of these alloys, could make the plateau slopes much flatter, which resulted in the increase of reversible hydrogen storage capacity. The improvement of sloping properties of melt-spun $Ti_{0.85}Zr_{0.13}(Fe_x-V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloys was mainly attributed to the homogeneity of chemical composition.

키워드

참고문헌

  1. S.Shi, J.Y.Hwang, "Research frontier on new materials and concepts for hydrogen storage", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 224. https://doi.org/10.1016/j.ijhydene.2006.05.015
  2. J.H.Kim, K.S.Han, K.T.Hwang, B.G.Kim, Y.M. Kang, "Effect of heat treatment on microstructure and hydrogen storage properties of mass-produced $Ti_{0.85}Zr_{0.13}(Fe_{x-}V)_{0.56}Mn_{1.47}Ni_{0.05}$ alloy", Int. J. Hydrogen Energy, Vol. 38, 2013, p. 6215. https://doi.org/10.1016/j.ijhydene.2012.12.023
  3. J.Huot, E.Akiba, Y.Ishido, "Crystal structure of multiphase alloys (Zr,Ti)$(Mn,V)_2$", J. Alloys Compd., Vol. 231, 1995, p. 85. https://doi.org/10.1016/0925-8388(95)01842-5
  4. H.H.Lee, J.Y.Lee, "A study on the alloy desigin of high capacity Ti-based metal hydride for for Ni/MH rechargeable battery", J. of the Korean Hydrogen Energy Society, Vol. 7, No. 1, 1996, p. 19.
  5. T.Gamo, Y.Moriwaki, N.Yanagihara, T.Iwaki, "Life properties of Ti-Mn alloy hydrides and their hydrogen purification effect", J. Less-Common Met., Vol. 89, 1983, p. 495. https://doi.org/10.1016/0022-5088(83)90361-2
  6. J.G.Park, H.Y.Jang, S.C.Han, P.S.Lee, J.Y.Lee, "Hydrogen storage properties of TiMn2-based alloys for metal hydride heat pump", Mater. Sci. Eng. B, Vol. A329-331, 2002, p. 351. https://doi.org/10.1016/S0921-5093(01)01598-2
  7. Y.Shudo, T.Ebisawa, H.Itoh, "Characterization of Ti-Zr-Mn-V-based phase alloys for MH refrigeration system", J. Alloys Compd., Vol. 356-357, 2003, p. 497. https://doi.org/10.1016/S0925-8388(03)00365-7
  8. S.Suwarno, J.K.Solberg, V.A.Yartys, B.Krogh, "Hydrogenation and microstructural study of meltspun $Ti_{0.8}V_{0.2}$", J. Alloys Compd., Vol. 509S, 2011, p. S775.
  9. H.H.Cheng, H.G.Yang, S.L.Li, X.X.Deng, D.M. Chen, K.Yang, "Hydrogen storage properties of melt-spun $LaNi_{4.25}Al_{0.75}$", J. Alloys Compd., Vol. 458, 2008, p. 330. https://doi.org/10.1016/j.jallcom.2007.03.102
  10. F.S.Wei, Y.Q.Lei, L.X.Chen, G.L.Lu, Q.D.Wang, "Influence of rapid quenching on the microstructure and electrochemical properties of Co-free $LaNi_{4.92}Sn_{0.33}$ hydrogen stroage electrode alloy", Int. J. Hydrogen Energy, Vol. 32, 2007, p. 2935. https://doi.org/10.1016/j.ijhydene.2007.01.001
  11. H.Taizhong, Z.Wu, B.Xia, J.Chen, X.Yu, N.Xu, "Effect of stoichiometry on hydrogen storage performance of Ti-Cr-V-Fe based alloys", Intermetallics, Vol. 13, 2005, p. 1075. https://doi.org/10.1016/j.intermet.2004.12.024
  12. S.F.Santos, J.Huot, "Hydrogen storage in $TiCr_{1.2}$ (FeV)x BCC solid solutions", J. Alloys Compd., Vol. 472, 2009, p. 247. https://doi.org/10.1016/j.jallcom.2008.04.062
  13. J.Mi, X.Guo, X.Liu, L.Jiang, Z.Li, L.Hao, "Effect of Al on microstructures and hydrogen storage properties of $Ti_{26.5}Cr_{20}(V_{0.45}Fe_{0.085})_{100-X}Al_xCe_{0.5}$ alloy", J. Alloys Compd., Vol. 485, 2009, p. 234.
  14. R.Li, J.Wu, S.Zhou, J.Qian, "Effects of cobalt content and preparation on electrochemical capacity of AB5-type hydrogen storage alloys at different temperature", J. Rare Earths, Vol. 24, 2006, p. 341. https://doi.org/10.1016/S1002-0721(06)60121-X
  15. J.K.Park, H.W.Jang, S.C.Han, P.S.Lee, J.Y.Lee, "The thermodynamic properties of Ti-Zr-Cr-Mn Laves phase alloys", J. Alloys Compd., Vol. 325, 2001, p. 293. https://doi.org/10.1016/S0925-8388(01)01409-8