DOI QR코드

DOI QR Code

다물체 동역학 해석방법을 이용한 철도차량의 임계속도 계산

Calculation of Critical Speed of Railway Vehicle by Multibody Dynamics Analysis

  • 강주석 (한국교통대학교 철도차량시스템공학과)
  • Kang, Juseok (Dept. of Railway Vehicle System Engineering, Korea Nat'l Univ. of Transportation)
  • 투고 : 2013.04.24
  • 심사 : 2013.09.11
  • 발행 : 2013.11.01

초록

본 연구에서는 다물체 동역학 모델을 이용한 철도차량의 임계속도 계산 방법을 제시하였다. 휠과 레일의 접촉 구속조건과 접촉력을 휠셋 단위에서 수식화하였다. 이를 대차모델에 합하여 구속조건을 가진 다물체 동역학 운동방정식으로 철도차량의 동적모델을 표현하였다. 철도차량의 다물체 동역학 모델에 대한 비선형 구속조건식과 운동방정식은 QR 분해법을 이용하여 독립좌표만으로 이루어진 선형방정식으로 유도하였다. 유도된 선형방정식으로부터 휠셋 및 이륜 대차에 대한 고유치 해석결과를 통해 임계속도를 구하였다. 임계속도에 영향을 미치는 차량 파라미터의 영향에 대한 결과를 제시하였다.

In this analysis, a method is presented to calculate the critical speed of a railway vehicle by using a multibody dynamic model. The contact conditions and contact forces between the wheel and the rail are formularized for the wheelset model. This is combined with the bogie model to obtain a multibody dynamic model of a railway vehicle with constraint conditions. First-order linear dynamic equations with independent coordinates are derived from the constraint equations and dynamic equations of railway vehicles using the QR decomposition method. Critical speeds are calculated for the wheelset and bogie dynamic models through an eigenvalue analysis. The influences of the design parameters on the critical speed are presented.

키워드

참고문헌

  1. Lee, S.Y. and Cheng, Y.C., 2005, "Hunting Stability Analysis of High-Speed Railway Vehicle Trucks on Tangent Tracks," Journal of Sound and Vibration, Vol. 282, pp. 881-898. https://doi.org/10.1016/j.jsv.2004.03.050
  2. Zolotas, A.C., Pearson, J.T. and Goodall, R.M., 2006, "Modelling Requirements for the Design of Active stability Control Strategies for a High Speed Bogie," Multibody System Dynamics, Vol. 15, pp. 51-66. https://doi.org/10.1007/s11044-006-2361-5
  3. Kim, P.K. and Seok, J.W., 2010, "Bifurcation Analysis on the Hunting Behavior of a Dual-Bogie Railway Vehicle Using the Method of Multiple Scales," Journal of Sound and Vibration, Vol. 329, pp. 4017-4039. https://doi.org/10.1016/j.jsv.2010.03.024
  4. Chung, W.J. and Kim, S.W., 2000, "A Study on the Critical Speed of Railway Vehicles," Trans. Korean Soc. Mech. Eng. A, Vol. 24, No. 8, pp. 1991-1999.
  5. Bauchau, O.A. and Nikishkov, Y.G, 2001, "An Implicit Transition Matrix Approach to Stability Analysis of Flexible Multi-Body Systems," Multibody System Dynamics, Vol. 5, pp. 279-301. https://doi.org/10.1023/A:1011488504973
  6. Polach, O. 1999, "A Fast Wheel- Rail Forces Calculation Computer Code," Vehicle System Dynamics Supplement, Vol. 33, pp. 728-739.
  7. Kang, J.S., 2013, "A Study on the Dynamic Analysis of Railway Vehicle by Using Track Coordinate System," Trans. KSAE, Vol. 21, No. 2, pp. 113-121.
  8. Kang, J.S., 2012, "A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact," J. of Korean Society for Railway, Vo. 15, NO. 1, pp. 1-8. https://doi.org/10.7782/JKSR.2012.15.1.001
  9. Using Matlab Ver. 6, 2004, The Mathworks Inc., Natick, MA, USA.
  10. Shabana, A.A., Zaazaa, K.E. and Sugiyama, H., 2008, Railroad Vehicle Dynamics: A Computational Approach, CRC Press.