DOI QR코드

DOI QR Code

200kW 급 태양광발전 어레이 표면의 냉각/세정에 대한 장기 실증 실험

Long-Term Experiments of Cooling/Cleaning on Surface of 200-kW PV Power Array

  • 투고 : 2012.05.11
  • 심사 : 2013.09.25
  • 발행 : 2013.11.01

초록

태양광 발전은 일사량이 높을수록 발전량이 증가된다. 그러나 일사량이 높아짐에 따라 셀의 온도도 같이 증가하여 발전효율은 감소하게 된다. 일반적으로 태양광 셀(Cell) 표면의 온도를 $1^{\circ}C$ 감소시키면 약 0.5%의 발전량의 증가가 있다고 알려져 있다. 본 논문은 태양광 발전량 증가를 위해 냉각/세정 장기 실증 실험을 수행하였다. 기전력과 집광량을 높이기 위해 모듈 표면 온도를 낮추고 오염물질을 제거하는 냉각/세정 기술을 이용하였다. 실험 방법은 냉각/세정 설비가 설치된 곳과 설치되지 않은 곳의 이용률을 비교하였다. 장기 실증 시험을 결과 냉각/세정 설비의 구동으로 인한 발전량이 최소 13%에서 최대 19%까지 증가하였다.

In general, the solar photovoltaic power increases with higher solar insolation. However, the solar cell generation efficiency reduces because the solar cell surface is heated by solar insolation. According to advanced research, with a $1^{\circ}C$ increase in the solar cell surface temperature, the generation efficiency decreases by ~0.5%. To solve this problem, we conducted experiments in which we attempted to reduce the solar cell surface temperature using a water jet spray. In this study, we found the long-term experimental results of increases in solar power generation. The experimental results show a comparison of the site with and without cooling and cleaning equipment being installed. The results of the long-term experiments show that solar photovoltaic power generation is increased by at least 13% up to 19% with cooling and cleaning.

키워드

참고문헌

  1. Emerging PV industry, SAMSUNG Economic Research, 2008.
  2. Yu, S. P., Kim, E. H., Jeong, S.D., Seo, Y.S. and Jeong, N.J., 2011 The Korean Solar Energy Society Long-Term Experimental Study on the Improving PV Power By the Water Cooling for Si-Solar Modules.
  3. Bione, J., Vilela, O.C. and Fraidenraich, N., 2004, "Comparison of the Performance of PV Water Pumping System Driven by Fixed, Tracking and VTrough Generators," Solar Energy 76 pp. 703-711. https://doi.org/10.1016/j.solener.2004.01.003
  4. Yun, G. Y., McEvoy, M. and Steemers, K., 2007, "Design and Overall Energy Performance of a Ventilated Photovoltaic Facade," Solar Energy 81 pp. 383-394. https://doi.org/10.1016/j.solener.2006.06.016
  5. Royne, A., Dey,C. J. and Mills, D. R., 2005, "Cooling of Photovoltaic Cells Under Concentrated Illumination: a Critical Review," Solar Energy Materials & Solar cells 86 pp. 451-483. https://doi.org/10.1016/j.solmat.2004.09.003
  6. Skoplaki, E. and Palyvos, J.A., 2009, "On the Temperature Dependence of Photovoltaic Module Electrical Performance:A Review of Efficiency/Power Correlations," Solar Energy 83 pp. 614-624. https://doi.org/10.1016/j.solener.2008.10.008
  7. Tonui, J.K. and Tripanagnostopoulos, Y., 2008, "Performance Improvement of PV/T Solar Collectors with Natural Air Flow Operation," Solar Energy 82 pp. 1-12. https://doi.org/10.1016/j.solener.2007.06.004
  8. Stamenic, L., Smiley, E. and Karim, K., 2004, "Low Light Conditions Modelling for Building Integrated Photovoltaic (BIPV) Systems," Solar Energy 77 pp. 37-45. https://doi.org/10.1016/j.solener.2004.03.016
  9. Tonui, J.K. and Tripanagnostopoulos, Y., 2007, "Air-Cooled PV/T Solar Collectors with Low Cost Performance Improvements," Solar Energy 81 pp. 498-511. https://doi.org/10.1016/j.solener.2006.08.002
  10. Coventry, J. S., 2005, "Performance of a Concentrating Photovoltaic/Thermal Solar Collector," Solar Energy 78 pp. 211-222. https://doi.org/10.1016/j.solener.2004.03.014
  11. Odeh, S. and Behnia, M., 2009, "Improving Photovoltaic Module Efficiency Using Water Cooling," Heat Transfer Engineering 30(6) pp. 499-505. https://doi.org/10.1080/01457630802529214
  12. Tripanagnostopoulos, Y., Nousia, T.H., Souliotis, M. and Yianoulis, P., 2002, Hybrid photovoltaic/thermal Solar Systems," Solar Energy 72(3) pp. 217-234. https://doi.org/10.1016/S0038-092X(01)00096-2
  13. Brinkworth, B. J., Cross, B. M., Marshall, R. H. and Yang, H., 1997, "Thermal Regulation of Photovoltaic Cladding," Solar Energy 61(3) pp. 169-178. https://doi.org/10.1016/S0038-092X(97)00044-3
  14. Jones, A. D. and Underwood, C. P., 2001, "A Thermal Model for Photovoltaic Systems," Solar Energy 70(4) pp. 349-359. https://doi.org/10.1016/S0038-092X(00)00149-3
  15. Krauter, S., 2004, Increased Electrical Yield via Water Flow over the Front of Photovoltaic Panels," Solar Energy Materials & Solar Cells 82 pp. 131-137. https://doi.org/10.1016/j.solmat.2004.01.011
  16. Fahmy, E. A. S. F. H., Abd-el Aziz, M. M., Mahmoudi, P. Z. A., "Increased Efficiency in the Conversion of Solar Energy to Electric Power," Energy Sources 21 pp. 367-377.
  17. Skoplaki, E., Palyvos, J.A., 2009, "On the Temperature Dependence of Photovoltaic Module Electrical Performance:A Review of Efficiency/Power Correlations," Solar Energy, 83 pp. 614-624. https://doi.org/10.1016/j.solener.2008.10.008