DOI QR코드

DOI QR Code

피치 코팅된 유리섬유의 탄화가 에폭시 복합재료의 열전도도에 미치는 영향

Carbonization of Pitch-coated Glass Fibers on Thermal Conductivity of Epoxy Composites

  • 투고 : 2013.06.27
  • 심사 : 2013.10.23
  • 발행 : 2013.10.31

초록

본 연구에서는 탄소재료의 우수한 열적 특성을 이용하여 에폭시 수지의 열전도도 특성을 향상시키기 위해 Pitch 탄화유리섬유를 제조하고 산처리 기능화 방법을 수행하여 형태학적, 기계적, 및 열전도 특성을 관찰하였다. 그 결과, 산처리 기능화된 Pitch 탄화유리섬유는 에폭시 수지 내에서 분산성 및 계면결합력이 향상됨에 따라 기계적 물성 및 열전도 특성이 증가함을 확인하였다. 특히, Pitch 탄화유리섬유 복합재료 내의 Pitch 탄화유리섬유의 함량이 증가함에 따라 기계적 물성 및 열전도 특성이 증가하여, 탄소섬유 복합재료보다 기계적 물성은 10%, 열전도 특성은 150% 향상됨을 확인하였다. 따라서, 본 연구에서 제조된 Pitch 탄화유리섬유의 우수한 구조배향성 및 계면결합력은 에폭시수지내의 분산성을 향상시키고 열전도성 경로를 형성하여 에폭시수지의 우수한 기계적 및 열전도 특성에 영향을 미치는 것으로 판단된다.

In this work, pitch-carbonized glass fibers were prepared for reinforcement of composites. The influence of acid functionalization of the fibers on the morphological, mechanical, and thermal properties of fiber-reinforced epoxy matrix composites was investigated. The acid functionalization of the fibers led to 10 and 150% increases in the mechanical and thermal properties, respectively, as compared to carbon fiber-reinforced composites. This can be attributed to the superior orientation of fiber structures and good interfacial interactions between fillers and epoxy matrix, resulting in enhanced degree of dispersion and formation of thermally conductive paths in the functionalized composites.

키워드

참고문헌

  1. Park, S.J., Oh, J.S., and Lee, J.R., "Effect of Anodized Carbon Fiber Surfaces on Mechanical Interfacial Properties of Carbon Fibers-reinforced Compomsites", Composites Research, Vol. 15, 2002, pp. 16-23.
  2. Kim, J.W., Im, H.G., and Kim, J.H., "The Effect of Surface Modification on the Disperisibilities and the Thermal Conductivities of Single-Walled Carbon Nanotube (SWCNT)/Epoxy Composites", Applied Chemistry for Engineeing, Vol. 22, 2011, pp. 266-271.
  3. Choi, W.K., Kim, B.J., Min, B.G., Bae, K.M., and Park, S.J., "Effects of Sizing Treatment of Carbon Fibers on Mechanical Interfacial Properties of Nylon6 Matrix Composites", Elastomer, Vol. 45, 2010, pp. 2-6.
  4. Lee, H.L., Ha, S.M., Yoo, Y.J., and Lee, S.G., "Current Trends in Thermally Conductive Polymer Composites", Polymer Science and Technology, Vol. 24, 2010, pp. 30-37.
  5. Zhou, T., Wang, X. , Liu, X., and Xiong, D., "Improved Thermal Conductivity of Epoxy Composites using a Hybrid Multiwalled Carbon Nanotube/Micro-SiC Filler", Carbon, Vol. 48, 2010, pp. 1171-1176. https://doi.org/10.1016/j.carbon.2009.11.040
  6. Sohi, N.J.S., Bhadra, S., and Khastgir, D., "The Effect of Different Carbon Fillers on the Electrical Conductivity of Ethylene Vinyl Acetate Copolymer-based Composites and the Applicability of Different Conductivity Models", Carbon, Vol. 49, 2011, pp. 1349-1361. https://doi.org/10.1016/j.carbon.2010.12.001
  7. Choi, J.R., and Park, S.J., "A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powdersfilled Epoxy Matrix Composites", Polymer Korea, Vol. 37, 2013, pp. 47-51. https://doi.org/10.7317/pk.2013.37.1.47
  8. Zhu, S., and Chung, D.D.L., "Theory of Piezoresistivity for Strain Sensing in Carbon Fibers Reinforced Cement under Flexure", Journal of Materials Science, Vol. 42, 2007, pp. 6222-6233. https://doi.org/10.1007/s10853-006-1131-3
  9. Bae, K.M., Seo, M.K., and Park, S.J., "A Study on Rheological Behavior of MWCNTs/Epoxy Composites", Journal of Industrial and Engineering Chemistry, Vol. 16, 2010, pp. 337-339. https://doi.org/10.1016/j.jiec.2010.01.051
  10. Aliev, A.E., Lima, M.H., Silverman, E.M., and Baughman, R.H., "Thermal Conductivity of Multi-walled Carbon Nanotubes Sheets: Radiation Losses and Quenching of Phonon Modes", Nanotechnology, Vol. 21, 2010, pp. 035709-035720. https://doi.org/10.1088/0957-4484/21/3/035709
  11. Wang, Z.J., Kwon, D.J., Gu, G.Y., Park, J.K., Lee, W.I., and Park, J.M., "Improvement of Interfacial Adhesion of Plasma Treated Single Carbon Fiber Reinforced CNT-Phenolic Nanocomposites by Electrical Resistance Measurement and Wettability", Journal of Adhesion and Interface, Vol. 12, 2011, pp. 88-93.
  12. Seo, M.K., and Park, S.J., "Studies on Thermal and Dynamic Viscoelastic Behaviors of Multiwalled Carbon Nanotubes-reinforced Epoxy Matrix Composites", Korean Chemical Engineering Research, Vol. 43, 2005, pp. 401-406.
  13. Hong, J.H., and Shim, S.E., "Trends in Development of Thermally Conductive Polymer Composites", Applied Chemistry for Engineering, Vol. 21, 2010, pp. 115-128.
  14. Parker, W.J., Jenkins, R.J., Butler, C.P., and Abbot, G.L., "Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity", Journal of Applied Physics, Vol. 32, 1961, pp. 1679-1684. https://doi.org/10.1063/1.1728417
  15. Abdalla, M., Dean, D., Theodore, M., Fielding, J., Nyairo, E., and Price, G., "Magnetically Processed Carbon Nanotube/ Epoxy Nanocomposites: Morphology, Thermal, and Mechanical Properties", Polymer, Vol. 51, 2010, pp. 1614-1620. https://doi.org/10.1016/j.polymer.2009.05.059
  16. Cao, B.Y., Li, Y.W., Kong, J., Chen, H., Xu, Y, Yung, K.L., and Cai, A., "High Thermal Conductivity of Polyethylene Nanowire Arrays Fabricated by an Improved Nanoporous Template Wetting Technique", Polymer, Vol. 52, 2011, pp. 1711-1715. https://doi.org/10.1016/j.polymer.2011.02.019
  17. Park, S.J., and Kim, K.D., "Adsorption Behaviors of CO_{2}$ and NH3 on Chemically Surface-Treated Activated Carbons", Journal of Colloid and Interface Science, Vol. 212, 1999, pp. 186-189. https://doi.org/10.1006/jcis.1998.6058
  18. Moon, C.W., Jung, G., Im, S.S., Nah, C.W., and Park, S.J., "Effect of Anodic Oxidation of $H_{2}SO_{4}$/HNO_{3}$ Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins", Polymer Korea, Vol. 37, 2013, pp. 61-65. https://doi.org/10.7317/pk.2013.37.1.61
  19. Meng, L., Fan, D., Zhang, C., Jiang, Z., and Huang, Y., "The Effect of Oxidation Treatment by KClO_{3}$/$H_{2}SO_{4}$ System in Intersurface Performance of Carbon Fibers", Applied Surface Science, Vol. 268, 2013, pp. 225-230. https://doi.org/10.1016/j.apsusc.2012.12.066
  20. Zhang, G., Sun, S., Yang, D., Dodelet, J.P., and Sacher, E., "The Surface Analytical Characterization of Carbon Fibers Functionalized by $H_{2}SO_{4}$/HNO_{3}$ Treatment", Carbon, Vol. 46, 2008, pp. 196-205. https://doi.org/10.1016/j.carbon.2007.11.002
  21. Jang, S.J., and Kim, H.S., "Performance Improvement of Glass Fiber-Poly(henylene sulfide) Composite", Journal of Applied Polymer Science, Vol. 60, 1996, pp. 2297-2306. https://doi.org/10.1002/(SICI)1097-4628(19960620)60:12<2297::AID-APP29>3.0.CO;2-2
  22. Heo, G.Y., and Park, S.J., "Effect of Substituted Trifluoromethyl Groups on Thermal and Mechanical Propertiess of Fluorinecontaining Epoxy Resin", Macromolecular Research, Vol. 17, 2009, pp. 870-873. https://doi.org/10.1007/BF03218628
  23. Lee, J.U., Jo, W.H., Lee, W.O., and Byun, J.H., "Preparation and Characterization of Water-Soluble Polyaniline/Carbon Nanotube Composites", Composites Research, Vol. 24, 2011, pp. 1-6.
  24. Kim H.S., "Processing-Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes", Composites Research, Vol. 24, 2011, pp. 34-38.
  25. Park, S.J., Lee, E.J., and Kwon, S.H., "Influence of Surface Treatment of Polyimide Film on Adhesion Enhancement between Polyimide and Metal Films", Bulletin of the Korean Chemical Society, Vol. 28, 2007, pp. 188-192. https://doi.org/10.5012/bkcs.2007.28.2.188
  26. Moon, C.W., Jung, G., Im, S.S., Nah, C.W., and Park, S.J., "Effect of Anodic Oxidation of $H_{2}SO_{4}$/HNO_{3}$ Ratio for Improving Interfacial Adhesion between Carbon Fibers and Epoxy Matrix Resins", Polymer Korea, Vol. 37, 2013, pp. 61-65. https://doi.org/10.7317/pk.2013.37.1.61
  27. Young, T., Hyun, B.S., and Jang, T.S., "Study on the Thermal Radiation Performance of the Multi-functional Structure Made of the Carbon Fiber Composite Material", Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, 2012, pp. 157-164. https://doi.org/10.5139/JKSAS.2012.40.2.157
  28. Bright, A.A., and Singer, L.S., "The Electronic and Structural Characteristics of Carbon Fibers from Mesophase Pitch", Carbon, Vol. 17, 1979, pp. 59-69. https://doi.org/10.1016/0008-6223(79)90071-X
  29. Yu, A., Itkis, M.E., Bekyarova, E., and Haddon, R.C., "Effect of Single-walled Carbon Nanotube Purity on the Thermal Conductivity of Carbon Nanotube-based Composites", Applied Physics Letters, Vol. 89, 2006, pp. 133102-133104. https://doi.org/10.1063/1.2357580