DOI QR코드

DOI QR Code

MCDM Approach for Flood Vulnerability Assessment using TOPSIS Method with α Cut Level Sets

α-cut Fuzzy TOPSIS 기법을 적용한 다기준 홍수취약성 평가

  • Lee, Gyumin (Post Doctoral Fellow, Department of Civil and Environmental Engineering, Sungkyunkwan University) ;
  • Chung, Eun-Sung (School of Civil Engineering, Seoul National University of Science and Technology) ;
  • Jun, Kyung Soo (Graduate School of Water Resources, Sungkyunkwan University)
  • 이규민 (성균관대학교 공과대학 건설환경시스템공학과) ;
  • 정은성 (서울과학기술대학교 건설시스템디자인공학과) ;
  • 전경수 (성균관대학교 공과대학 수자원대학원 수자원학과)
  • Received : 2013.05.17
  • Accepted : 2013.08.19
  • Published : 2013.10.31

Abstract

This study aims to develop a multiple criteria decision making (MCDM) approach for flood vulnerability assessment which considers uncertainty. The flood vulnerability assessment procedure consists of three steps: (1) use the Delphi process to determine the criteria and their corresponding weights-the adopted criteria represent the social, economic, and environmental circumstances related to floods, (2) construct a fuzzy data matrix for the flood vulnerability criteria using fuzzification and standardization, and (3) set priorities based on the number of assessed vulnerabilities. This study uses a modified fuzzy TOPSIS method based on ${\alpha}$-level sets which considers various uncertainties related to weight derivation and crisp data aggregation. Further, Spearman's rank correlation analysis is used to compare the rankings obtained using the proposed method with those obtained using fuzzy TOPSIS with fuzzy data, TOPSIS, and WSM methods with crisp data. The fuzzy TOPSIS method based on ${\alpha}$-cut level sets is found to have a higher correlation rate than the other methods, and thus, it can reduce the difference of the rankings which uses crisp and fuzzy data. Thus, the proposed flood vulnerability assessment method can effectively support flood management policies.

본 연구에서는 다기준 의사결정기법을 적용한 홍수취약성 평가에 내재되는 불확실성을 고려한 평가기법을 제시하였다. 홍수취약성평가과정은 3단계로 구성되며 1단계에서는 홍수와 연관되는 사회적, 경제적, 환경적 영향요인들 중에서 지역의 특성을 반영할 수 있는 평가인자를 선정하고 각 인자의 가중치를 책정한다. 이때 델파이 설문조사기법을 적용하여 의사결정자들의 의견을 수렴한다. 2단계는 평가자료를 수집하고 평가에 사용할 수 있도록 가공하는 단계이며 불확실성 문제를 해소하기 위하여 퍼지수를 적용하였다. 마지막단계에서 홍수취약성을 정량적으로 산정하여 취약지역의 우선순위를 도출한다. 본 연구에서는 퍼지수의 연산과정에서 발생하는 퍼지수의 과장 및 왜곡문제를 해소하기 위한 ${\alpha}$-cut fuzzy TOPSIS 방법을 적용하였다. 또한 수립한 평가기법으로 산정한 결과에 대하여 퍼지자료(fuzzy data)를 적용한 fuzzy TOPSIS, 크리스프(crisp) 자료를 사용한 TOPSIS, WSM등의 다양한 방법으로 평가한 결과들과의 상관관계분석을 수행하였다. 분석결과, ${\alpha}$-cut fuzzy TOPSIS 방법은 대체로 모든 방법과 높은 상관성을 나타내었다. 즉, 크리스프 자료와 퍼지자료를 사용하는 평가방법 사이에서 발생하는 결과의 차이가 ${\alpha}$-cut fuzzy TOPSIS를 이용하면 줄어드는 효과가 있다. 따라서본 연구에서 수립한 홍수취약성 평가방법은 불확실성 문제를 일정 부분 해소한 평가결과를 제시함으로서 치수정책 수립의 유용한 근거자료를 제공할 수 있다.

Keywords

References

  1. Adger, V. (2006). "Vulnerability." Glob Environ Change, Vol. 16, No. 3, pp. 268-281. https://doi.org/10.1016/j.gloenvcha.2006.02.006
  2. Adler, M., and Ziglio, E. (1996). Gazing into the oracle: The Delphi method and its application to social policy and public health, Jessica Kingsley Publishers, London.
  3. Angus, A.J., Hodge, I.D., McNally, S., and Sutton, M. A. (2003). "The setting of standards for agricultural nitrogen emissions: A case study of the Delphi technique." J. Environ. Manage., Vol. 69, No. 4, pp. 323-337. https://doi.org/10.1016/j.jenvman.2003.09.006
  4. Ashtiani, B., Haghighirad, F., Makui, A., and Montazer, G.A. (2009). "Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets." Applied Soft Computing, Vol. 9, pp. 457-461. https://doi.org/10.1016/j.asoc.2008.05.005
  5. Chu, T.C. (2002). "Selecting plant location via a fuzzy TOPSIS approach." Int. J. Adv. Manuf. Technol., Vol. 20, No. 11, pp. 859-864. https://doi.org/10.1007/s001700200227
  6. Chung, E.S., and Lee, K.S. (2009). "Identification of spatial ranking of hydrological vulnerability using multicriteria decision making techniques: Case study of Korea." Water Resour. Manage., Vol. 23, No. 12, pp. 2395-2416. https://doi.org/10.1007/s11269-008-9387-9
  7. Dubois, D., and Prade, H. (1978). "Operations on fuzzy numbers." Int. J. Systems Sci., Vol. 9, No. 6, pp. 613-626. https://doi.org/10.1080/00207727808941724
  8. Feng, C.M., and Wang, R.T. (2000). "Performance evaluation for airlines including the consideration of financial ratios." Journal of Air Transport Management, Vol. 6, No. 3, pp. 133-142. https://doi.org/10.1016/S0969-6997(00)00003-X
  9. Green, C. (2004). "The evaluation of vulnerability to flooding." Disaster Prevention and Management, Vol. 3, No. 4, pp. 323-329.
  10. Hwang, C.L., and Yoon, K.P. (1981). Multiple attribute decision making: an introduction. Sage Publications, Thousand Oaks London New Delhi, pp. 38-45.
  11. Hyde, K.M., Maier, H.R., and Colby, C.B. (2005). "A distance-based uncertainty analysis approach to multicriteria decision analysis for water resource decision making." Journal of Environmental Management, Vol. 77, No. 4, pp. 278-290. https://doi.org/10.1016/j.jenvman.2005.06.011
  12. Jun, K.S., Chung, E.S., Sung, J.Y., and Lee, K.S. (2011). "Development of spatial water resources vulnerability index considering climate change impacts." Science of the Total Environment, Vol. 409, No. 24, pp. 5228-5242. https://doi.org/10.1016/j.scitotenv.2011.08.027
  13. Kaufmann, A., and Gupta, M.M. (1991). Introduction to fuzzy arithmetic: Theory and applications. New York: Van Nostrand Reinhold.
  14. Kheireldin, K., and Fahmy, H. (2001). "Multi-Criteria Approach for Evaluating Long TermWater Strategies." Water International, Vol. 26, No. 4, pp. 527-535. https://doi.org/10.1080/02508060108686953
  15. Kienberger, S., Land, S., and Zeil, P. (2009). "Spatial vulnerability units-expert-based spatial modelling of socioeconomic vulnerability in the Salzach catchment, Austria." Nat. Hazards Earth Syt. Sci., Vol. 9, No. 3, pp. 767-778. https://doi.org/10.5194/nhess-9-767-2009
  16. Kim, D., Jung, Y., Park, M.J., Yoon, J.Y., Kim, S., and Choi, M. (2011). "Vulnerability Analysis of Water Resources Considering Climate Change." J. ofWetlands Research, Vol. 13, No. 1, pp. 25-33.
  17. Kim, G., Park, C.S., and Yoon, K.P. (1997). "Identifying investment opportunities for advanced manufacturing systems with comparative-integrated performance measurement." Int. J. Prod. Econ., Vol. 50, No. 1, pp. 23-33. https://doi.org/10.1016/S0925-5273(97)00014-5
  18. Kim, Y.K., Chung, E.S., and Lee, K.S. (2012). "Fuzzy TOPSIS Approach to Flood Vulnerability Assessment in Korea." Journal of Korea Water Resources Association, Vol. 45, No. 9, pp. 901-913. https://doi.org/10.3741/JKWRA.2012.45.9.901
  19. Lai, Y.J., Liu, T.Y., and Hwang, C.L. (1994). "TOPSIS for MODM." European Journal ofOperational Research, Vol. 76, No. 3, pp. 486-500. https://doi.org/10.1016/0377-2217(94)90282-8
  20. Lee, J.S (2006). Delphi method. Kyoyokbook. pp. 7-16.
  21. Lee, K.S., and Chung, E.S. (2007). "Development of integrated watershed management schemes for an intensively urbanized region in Korea." J. Hydro-Environ. Res., Vol. 1, No. 2, pp. 95-109. https://doi.org/10.1016/j.jher.2007.07.004
  22. Lim, K.W., and Lee, D.R. (2009). "The spatial MCDA approach for evaluating flood damage reduction alternatives." KSCE J. Civ. Eng., Vol. 13, No. 5, pp. 359-369. https://doi.org/10.1007/s12205-009-0359-2
  23. Linstone, H.A., and Turoff, M. (1975). The Delphi method: Techniques and application, Addison-Wesley Publishing Company Advanced Book Program.
  24. Messner, F., and Meyer, V. (2006). "Flood damages, vulnerability and risk perception challenges for flood damage research." Flood Risk Management: Hazards, Vulnerability and Mitigation Measures, edited by Schanze, J., Zeman, E., and Marsalek, J., Springer, pp. 149-167.
  25. Merz, B., Thieken, A.H., and Gocht, M. (2007). "Flood risk mapping at the local scale: concepts and challenges." Flood Risk Management in Europe, 25, Advances in Natural and Technological Hazards Research, edited by Begum, S., Stive, M.J.F., and Hall, J.W., Springer, Netherlands, pp. 231-251.
  26. Meyer, V., Scheuer, S., and Haase, D. (2009). "A multictiteria approach for flood risk mapping exemplified at the Mulderiver, Germany." Nat. Hazards., Vol. 48, No. 1, pp. 17-39. https://doi.org/10.1007/s11069-008-9244-4
  27. Moshkovich, H.M., Schellenberger, R., and Olson, D.L. (1998). "Data influences the result more than preferences: Some lessons from implementation of multiattribute techniques in a real decision task." Decision Support Systems, Vol. 22, No. 1, pp. 73-84. https://doi.org/10.1016/S0167-9236(97)00024-9
  28. Munich Re (2012). Natural catastrophes worldwide 1980-2012, Munich Re, Munich.
  29. Oussalah, M. (2002). "On the compatibility between defuzzification and fuzzy arithmetic operations." Fuzzy Sets and Systems, Vol. 128, No. 2, pp. 247-260. https://doi.org/10.1016/S0165-0114(01)00125-7
  30. Richey, J.S., Mar, B.W., and Horner, R.R. (1985). "The Delphi technique in environmental assessment I. Implementation and effectiveness." J. Environ. Manage., Vol. 21, No. 2, pp. 135-146.
  31. Scheuer, S., Haase, D., and Meyer, V. (2011). "Exploring multicriteria flood vulnerability by integrating economic, social and ecological dimensions of flood risk and coping capacity: From a starting point view towards an end point view of vulnerability." Natural Hazards., Vol. 58, No. 2, pp. 731-751. https://doi.org/10.1007/s11069-010-9666-7
  32. Schoemaker, P.J., and Waid, C.C. (1982). "An Experimental Comparison of Different Approaches to Determining Weights in Additive Value Models." Management Science, Vol. 28, No. 2, pp. 182-196. https://doi.org/10.1287/mnsc.28.2.182
  33. Sebald, C. (2010). Towards an Integrated Flood Vulnerability Index: A Flood Vulnerability Assessment, Master of Science (MSc).
  34. Shih, H.S., Shyur, H.J., and Lee, E.S. (2007). "An extension of TOPSIS for group decision making." Math. Comput. Model., Vol. 45, No. 7-8, pp. 801-813. https://doi.org/10.1016/j.mcm.2006.03.023
  35. Son, M., Sung, J.Y., Chung, E.S., and Jun, K.S. (2011). "Development of Flood Vulnerability Index Considering Climate Change." Journal of Korea Water Resources Association, Vol. 44, No. 3, pp. 231-248. https://doi.org/10.3741/JKWRA.2011.44.3.231
  36. Triantaphyllou, E., and Lin, C.T. (1996). "Development and evaluation of five fuzzy multiattribute decisionmaking methods." International Journal ofApproximate Reasoning, Vol. 14, No. 4, pp. 281-310. https://doi.org/10.1016/0888-613X(95)00119-2
  37. Wang, Y.M., and Elhag, T.M.S. (2006). "Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment." Expert Systems with Applications, Vol. 31, No. 2, pp. 309-319. https://doi.org/10.1016/j.eswa.2005.09.040
  38. Yoo, G.Y., and Kim, I.A. (2008). Development and application of a climate change vulnerability index. Korea Environment Institute, RE-05.
  39. Zimmermann, H.J. (1991). Fuzzy set theory and its applications (2nd ed.). Boston, MA: Kluwer-Nijhoff.