DOI QR코드

DOI QR Code

Antioxidant Activities of Hot Water Extract from Cornus walteri Wanger against Oxidative Stress Induced by tert-Butyl Hydroperoxide in HepG2 Cells

tert-Butyl Hydroperoxide로 산화 스트레스가 유도된 HepG2 세포에서 말채나무 열수추출물의 항산화 활성

  • Yeon, Seong Ho (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Ham, Hyeonmi (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Sung, Jeehye (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Kim, Younghwa (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Namkoong, Seulgi (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Dept. of Food Science and Technology, Chungbuk National University) ;
  • Lee, Junsoo (Dept. of Food Science and Technology, Chungbuk National University)
  • Received : 2013.06.17
  • Accepted : 2013.07.29
  • Published : 2013.10.31

Abstract

The objective of this study was to investigate the effect of hot water extract from Cornus walteri Wanger (CWE) on tert-butyl hydroperoxide (TBHP)-induced oxidative stress in HepG2 cells. Generation of reactive oxygen species (ROS), concentrations of cellular lipid peroxidation products and reduced glutathione, and antioxidant enzyme activity were used as biomakers of cellular oxidative status. Cells pretreated with CWE (25~200 ${\mu}g/mL$) showed an increased resistance to oxidative stress in a dose-dependent manner, as revealed by a higher percentage of surviving cells compared to control cells. ROS generation induced by TBHP was significantly reduced when cells were pretreated with 200 ${\mu}g/mL$ CWE for 4 h. Pretreatment with CWE (5~50 ${\mu}g/mL$) prevented the decrease in reduced glutathione and the increase in malondialdehyde and ROS evoked by TBHP in HepG2 cells. Finally, CWE pretreatments prevented the significant increase of glutathione peroxidase, catalase, glutathione reductase, and superoxide dismutase activities induced by TBHP. These results show that CWE has significant protective ability against a TBHP-induced oxidative insult and that the modulation of antioxidant enzymes by CWE may have an important antioxidant effect on TBHP-induced oxidative stress in HepG2 cells.

말채나무 열수추출물의 항산화 활성을 알아보기 위해 HepG2 세포에 TBHP로 산화 스트레스를 유도한 뒤 말채나무 열수추출물의 세포 보호효과, ROS 생성억제, 지질과산화 억제 및 GSH 생성에 미치는 영향에 대해 살펴보았다. 말채나무 열수추출물은 HepG2 세포에 TBHP로 산화 스트레스를 유도한 뒤 나타나는 세포독성에 대해 농도 의존적으로 유의하게 세포 보호효과를 보였으며, ROS 생성과 과산화물에 대한 지표로서 측정한 MDA도 말채나무 열수추출물에 의해 효과적으로 억제되었다(P<0.05). 또한 항산화 성분으로 생체 내에서 산화 및 환원반응에 중요한 역할을 하며 항산화 효소인 GSH-Px, GST에 전자공여체로 작용하는 GSH의 생성촉진 효능에서도 말채나무 열수추출물은 산화 스트레스로 감소된 GSH의 생성을 농도 의존적으로 촉진시켰다(P<0.05). 산화 스트레스에 의해 활성이 증가된 항산화 효소(CAT, SOD, GSH-Px, GR)도 말채나무 열수추출물의 처리로 감소하는 경향을 보였다. 이러한 결과로 미루어 보아 말채나무 열수 추출물은 인체 내에서 질병과 노화를 일으키는 원인 물질인 활성산소에 대해 강한 항산화 활성을 나타냄에 따라 보다 다양한 형태의 소재로 활용될 수 있을 것으로 생각된다.

Keywords

References

  1. Beckman KB, Ames BN. 1998. The free radical theory of aging matures. Physiol Rev 78: 547-581. https://doi.org/10.1152/physrev.1998.78.2.547
  2. Gutteridge JMC, Halliwell B. 1994. Antioxidants in nutrition, health, and disease. Oxford University Press, Oxford, UK. p 143.
  3. Halliwell B, Gutteridge JM, Aruoma OI. 1987. The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165: 215-219. https://doi.org/10.1016/0003-2697(87)90222-3
  4. Pellegrini M, Baldari CT. 2009. Apoptosis and oxidative stress-related diseases: the p66Shc connection. Curr Mol Med 9: 392-398. https://doi.org/10.2174/156652409787847254
  5. Bayr H. 2005. Reactive oxygen species. Crit Care Med 33: 498-501. https://doi.org/10.1097/01.CCM.0000186787.64500.12
  6. Malle E, Marsche G, Arnhold J, Davies MJ. 2006. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta 1761: 392-415. https://doi.org/10.1016/j.bbalip.2006.03.024
  7. Kamat JP. 2006. Peroxynitrite: a potent oxidizing and nitrating agent. Indian J Exp Biol 44: 436-447.
  8. Lee SH, Yoon KR, Lee E, Cha YY. 2011. Anti-inflammatory effect of Cornus walteri. Korean J Oriental Physiol & Pathology 25: 982-988.
  9. Choi WH, Park WY, Hwang BY, Oh GJ, Kang SJ, Lee KS, Ro JS. 1998. Phenolic compounds from the stem bark of Cornus walteri Wanger. Kor J Pharmacogn 29: 217-224.
  10. Lim CS, Li CY, Kim YM, Lee WY, Rhee HI. 2005. The inhibitory effect of Cornus walteri extract against ${\alpha}$-amylase. J Korean Soc Appl Biol Chem 48: 103-108.
  11. Park WH, Cha YY. 2009. Effect of stem bark extracts of Cornus walteri Wanger on the lipid lowering, anti-oxidative activity and concentration of proinflammatory cytokines in rat fed high fat diet. J Oriental Rehab Med 19: 59-78.
  12. Dewanto V, Wu X, Liu RH. 2002. Processed sweet corn has higher antioxidant activity. J Agric Food Chem 50: 4959-4964. https://doi.org/10.1021/jf0255937
  13. Kim HY, Woo KS, Hwang IG, Lee YR, Jeong HS. 2008. Effects of heat treatments on the antioxidant activities of fruits and vegetables. Korean J Food Sci Technol 40: 166-170.
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Murrant CL, Reid MB. 2001. Detection of reactive oxygen and reactive nitrogen species in skeletal muscle. Microsc Res Tech 55: 236-248. https://doi.org/10.1002/jemt.1173
  16. Kong SH, Choi YM, Kim YW, Kim DJ, Lee JS. 2009. Antioxidant activity and antioxidant components in methanolic extract from Geumjong rice. J Korean Soc Food Sci Nutr 38: 807-811. https://doi.org/10.3746/jkfn.2009.38.6.807
  17. Bueqe JA, Aust SD. 1978. Microsomal lipid peroxidation. Methods Enzymol 52: 302-310. https://doi.org/10.1016/S0076-6879(78)52032-6
  18. Baker MA, Cerniglia GJ, Zaman A. 1990. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190: 360-365. https://doi.org/10.1016/0003-2697(90)90208-Q
  19. Flohe L, Gunzler WA. 1984. Assays of glutathione peroxidase. Methods Enzymol 105: 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1
  20. Fossati P, Prencipe L, Berti G. 1980. Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/4-aminophenazone chromogenic system in direct enzymic assay of uric acid in serum and urine. Clin Chem 26: 227-231.
  21. Ukeda H, Kawana D, Maeda S, Sawamura M. 1999. Spectrophotometric assay for superoxide dismutase based on the reduction of highly water-soluble tetrazolium salts by xanthine-xanthine oxidase. Biosci Biotechnol Biochem 63: 485-488. https://doi.org/10.1271/bbb.63.485
  22. Jeong CH, Jang ST, Joo OS, Lee SC, Shin YH, Shim KH, Cho SH, Choi SG, Heo HJ. 2009. Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial green, puer, oolong, and black teas. Korean J Food Preserv 16: 230-237.
  23. Ju JC, Shin JH, Lee SJ, Cho HS, Sung NJ. 2006. Antioxidative activity of hot water extracts from medicinal plants. J Korean Soc Food Sci Nutr 35: 7-14. https://doi.org/10.3746/jkfn.2006.35.1.007
  24. Joo YJ. 2013. Antioxidant activities of medicinal plant extracts. J Korean Soc Food Sci Nutr 42: 512-529. https://doi.org/10.3746/jkfn.2013.42.4.512
  25. Halliwell B, Gutteridge JM. 1990. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol 186: 1-85. https://doi.org/10.1016/0076-6879(90)86093-B
  26. Aruoma OI. 1998. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75: 199-212. https://doi.org/10.1007/s11746-998-0032-9
  27. Choi Y, Lee SM, Chun J, Lee HB, Lee J. 2006. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem 99: 381-387. https://doi.org/10.1016/j.foodchem.2005.08.004
  28. Kim MJ, Park EJ. 2011. Feature analysis of different in vitro antioxidant capacity assays and their application to fruit and vegetable samples. J Korean Soc Food Sci Nutr 40: 1053-1062. https://doi.org/10.3746/jkfn.2011.40.7.1053
  29. Choi Y, Lee SM, Kim Y, Yoon J, Jeong HS, Lee J. 2010. A tocotrienol-rich fraction from grape seeds inhibits oxidative stress induced by tert-butyl hydroperoxide in HepG2 cells. J Med Food 13: 1240-1246. https://doi.org/10.1089/jmf.2009.1342
  30. Suttnar J, Masova L, Dyr JE. 2001. Influence of citrate and EDTA anticoagulants on plasma malondialdehyde concentrations estimated by high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 751: 193-197. https://doi.org/10.1016/S0378-4347(00)00453-9
  31. Kim Y, Choi Y, Ham H, Jeong HS, Lee J. 2013. Protective effects of oligomeric and polymeric procyanidin fractions from defatted grape seeds on tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. Food Chem 137: 136-141. https://doi.org/10.1016/j.foodchem.2012.10.006
  32. Zhang XH, Choi SK, Seo JS. 2009. Effect of dietary grape pomace on lipid oxidation and related enzyme activities in rats fed high fat diet. Korean J Nutr 42: 415-422. https://doi.org/10.4163/kjn.2009.42.5.415
  33. Lima CF, Valentao PC, Andrade PB, Seabra RM, Fernandes-Ferreira M, Pereira-Wilson C. 2007. Water and methanolic extracts of Salvia officinalis protect HepG2 cells from t-BHP induced oxidative damage. Chem Biol Interact 167: 107-115. https://doi.org/10.1016/j.cbi.2007.01.020
  34. Jiao HL, Ye P, Zhao BL. 2003. Protective effects of green tea polyphenols on human HepG2 cells against oxidative damage of fenofibrate. Free Radic Biol Med 35: 1121-1128. https://doi.org/10.1016/S0891-5849(03)00506-9
  35. Bobek P. 1999. Dietary tomato and grape pomace in rat: effect on lipid in serum and liver, and on antioxidant status. Br J Biomed Sci 56: 109-113.
  36. Alia M, Ramos S, Mateos R, Granado-Serrano AB, Bravo L, Goya L. 2006. Quercetin protects human hepatoma HepG2 against oxidative stress induced by tert-butyl hydroperoxide. Toxicol Appl Pharmacol 212: 110-118. https://doi.org/10.1016/j.taap.2005.07.014

Cited by

  1. In Vitro Hepatoprotective Effects of Fermented Curcuma longa L. by Aspergillus oryzae against Alcohol-Induced Oxidative Stress vol.45, pp.6, 2016, https://doi.org/10.3746/jkfn.2016.45.6.812
  2. Protective effect of STAR of STAR series on CCl4 induced acutehepatotoxicity by regulation of reactive oxygen species vol.23, pp.2, 2016, https://doi.org/10.11002/kjfp.2016.23.2.275
  3. Antioxidative and Antiproliferative Effects of Lindera glauca Blume on Human Colorectal Cancer Cells vol.44, pp.4, 2015, https://doi.org/10.3746/jkfn.2015.44.4.635
  4. 겉보리에서 배양한 영지버섯 추출물의 항산화 및 항염증 효능 평가 vol.25, pp.1, 2013, https://doi.org/10.7783/kjmcs.2017.25.1.29
  5. 멀꿀 열매 추출물의 항산화 활성 및 H2O2로 유도된 산화적 스트레스와 아세트아미노펜 독성 모델에서의 간 보호효과 vol.28, pp.6, 2013, https://doi.org/10.5352/jls.2018.28.6.708
  6. 산화적 스트레스에 대한 여주(Momordica charantia Linn.)잎의 항산화 활성 및 간세포 보호능 vol.35, pp.6, 2013, https://doi.org/10.7318/kjfc/2020.35.6.597
  7. 고장초 추출물의 t-BHP로 산화적 손상이 유도된 HepG2 세포 보호 효과 vol.31, pp.3, 2021, https://doi.org/10.5352/jls.2021.31.3.338
  8. Protective Effects of the Methanol Extract from Calyx of Diospyros kaki on Alcohol-Induced Liver Injury vol.50, pp.4, 2013, https://doi.org/10.3746/jkfn.2021.50.4.339