참고문헌
- B. Beck, R. Hiptmair and B.Wohlmuth, Hierarchical error estimator for eddy current computation, Numerical mathematics and advanced applications (Jyvaskyla, 1999), 110-120, World Sci. Publishing, River Edge, NJ, 2000.
- R. C. MacCamy and E. P. Stephan, A boundary element method for an exterior problem for three-dimensional Maxwell's equations, Applicable Anal. 16 (1983), no. 2, 141-163. https://doi.org/10.1080/00036818308839466
- R. C. MacCamy and E. P. Stephan, A skin effect approximation for eddy current problems, Arch. Rational Mech. Anal. 90 (1985), no. 1, 87-98. https://doi.org/10.1007/BF00281588
- R. C. MacCamy and E. P. Stephan, A simple layer potential method for three-dimensional eddy current problems, Ordinary and partial differential equations (Dundee, 1982), 477-484, Lecture Notes in Math., 964, Springer-Verlag, 1982.
- R. C. MacCamy and E. P. Stephan, Solution procedures for three-dimensional eddy current problems, J. Math. Anal. Appl. 101 (1984), no. 2, 348-379. https://doi.org/10.1016/0022-247X(84)90108-2
-
J.-C. Nedelec, Computation of eddy currents on a surface in
$\mathbb{R}^{3}$ by finite element methods, SIAM J. Numer. Anal. 15 (1978), no. 3, 580-594. https://doi.org/10.1137/0715038 - J.-C. Nedelec, Integral equations with non-integrable kernels, Integral Equations Operator Theory 5 (1982), 562 - 572. https://doi.org/10.1007/BF01694054
- A. Bossavit, The computation of eddy-currents in dimension 3 by using mixed finite elements and boundary elements in association, Math. Comput. Modelling 15 (1991), 33-42.
- M. Costabel and E. P. Stephan, Strongly elliptic boundary integral equations for electromagnetic transmission problems, Proc. Royal Soc. Edinburgh 109 A (1988), 271-296.
- H. Ammari and J.-C. Nedelec, Couplage elements finis/equations integrales pour la resolution des equations de Maxwell en milieu heterogene, Equations aux derivees partielles et applications, 19-33, Gauthier-Villars, Ed. Sci. Med. Elsevier, Paris, 1998.
- H. Ammari and J.-C. Nedelec, Coupling integral equations method and finite volume elements for the resolution of the Leontovich boundary value problem for the time-harmonic Maxwell equations in three-dimensional heterogeneous media, Mathematical aspects of boundary element methods (Palaiseau, 1998), 11-22, Chapman & Hall/CRC Res. Notes Math., 414, Chapman & Hall/CRC, Boca Raton, FL, 2000.
- H. Ammari and J.-C. Nedelec, Coupling of finite and boundary element methods for the time-harmonic Maxwell equations. Part II: a symmetric formulation, Oper. Theory Adv. Appl. 110 (1999), Birkhauser Verlag, 23 -32.
- V. Levillain, Couplage elements finis-equations integrales pour la resolution des equations de Maxwell en milieu heterogene, PhD-Thesis, Ecole Polytechnique, 1991.
- R. Hiptmair, Symmetric Coupling for Eddy Current Problems, SIAM J. Numer. Anal., 40 (2002), no. 1, 41-65. https://doi.org/10.1137/S0036142900380467
- R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering, SIAM J. Numer. Anal. 41 (2003), no. 3, 919-944. https://doi.org/10.1137/S0036142901397757
- H. Ammari, A. Buffa and J.-C. Nedelec, A justification of eddy currents model for the Maxwell equations, SIAM J. Appl. Math. 60 (2000), no. 5, 1805-1823. https://doi.org/10.1137/S0036139998348979
- M. COSTABEL, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), in Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech., Southampton, 1987, pp. 411-420.
- E. P. Stephan and M. Maischak, A posteriori error estimates for fem-bem couplings of three-dimensional electromagnetic problems, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 441-452. https://doi.org/10.1016/j.cma.2004.03.017
-
J.-C. Nedelec, Mixed finite elements in
$\mathbb{R}^{3}$ , Numer. Math. 35 (1980), 315-341. https://doi.org/10.1007/BF01396415 -
F. Leydecker and M. Maischak and E.P. Stephan and M. Teltscher, Adaptive FE-BE coupling for an electromagnetic problem in
$\mathbb{R}^{3}$ - a residual error estimator, Math. Methods appl. Sci. 33 (2010), no. 18, 2162-2186. https://doi.org/10.1002/mma.1389 - R. Bank, Hierarchical Bases and the Finite Element Method, Acta Numer. 5 (1996), 1 - 43. https://doi.org/10.1017/S0962492900002610
- R. Verfurth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, 1996.
- P. Mund and E. P. Stephan, An adaptive two-level method for the coupling of nonlinear FEM-BEM equations, SIAM J. Numer. Anal. 36 (1999), no. 4, 1001-1021. https://doi.org/10.1137/S0036142997316499
-
F. Leydecker and M. Maischak and E.P. Stephan and M. Teltscher, A p-hierarchical error estimator for a fe-be coupling formulation applied to electromagnetic scattering problems in
$\mathbb{R}^{3}$ , Appl. Anal. 91 (2012), no. 2, 277-293. https://doi.org/10.1080/00036811.2011.614605 - U. Brink and E. P. Stephan, Implicit residual error estimators for the coupling of finite elements and boundary elements, Math. Meth. Appl. Sci. 22 (1999), 923-936. https://doi.org/10.1002/(SICI)1099-1476(19990725)22:11<923::AID-MMA27>3.0.CO;2-Y
- C. Carstensen, A posteriori error estimate for the symmetric coupling of finite elements and boundary elements, Computing 57 (1996), no. 4, 301-322. https://doi.org/10.1007/BF02252251
- C. Carstensen, S. A. Funken and E. P. Stephan, On the adaptive coupling of FEM and BEM in 2-d-elasticity, Numer. Math. 77 (1997), 187-221. https://doi.org/10.1007/s002110050283
- C. Carstensen and E. P. Stephan, Adaptive coupling of boundary elements and finite elements, RAIRO Modelisation Math. Anal. Numer. 29 (1995), 779-817. https://doi.org/10.1051/m2an/1995290707791
- B. Beck, P. Deuflhard, R. Hiptmair, R. H. W. Hoppe and B. Wohlmuth, Adaptive multilevel methods for edge element discretizations of Maxwell's equations, Surveys Math. Indust. 8 (1999), no. 3-4, 271-312.
- B. Beck, R. Hiptmair, R. H.W. Hoppe and B.Wohlmuth, Residual based a posteriori error estimator for eddy current computation, M2AN Math. Model. Numer. Anal. 34 (2000), no. 1, 159-182. https://doi.org/10.1051/m2an:2000136
- R. H. W. Hoppe and B. I. Wohlmuth, Hierarchical basis error estimators for Raviart-Thomas discretizations of arbitrary order, Finite Element Methods: Superconvergence, Post-processing and A Posteriori Estimates, P. et al., ed., Marcel Dekker, New York (1997), 155-167.
- R. H. W. Hoppe and B. I. Wohlmuth, A comparison of a posteriori error estimators of mixed finite element discretizations by Raviart-Thomas elements, Math. Comp. 68 (1999), no. 228, 1347-1378. https://doi.org/10.1090/S0025-5718-99-01125-4
- P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Publishing, Boston-London, 1985.
- A. Buffa and P. Ciarlet, On traces for functional spaces related to Maxwell's equations. Part I: An integration by parts formula in Lipschitz polyhedra, Math. Methods Appl. Sci. 24 (2001), no. 1, 9-30. https://doi.org/10.1002/1099-1476(20010110)24:1<9::AID-MMA191>3.0.CO;2-2
- A. Buffa and P. Ciarlet, On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra an applications, Math. Methods Appl. Sci. 24 (2001), no. 1, 31-48. https://doi.org/10.1002/1099-1476(20010110)24:1<31::AID-MMA193>3.0.CO;2-X
- R. Hiptmair, Canonical Construction of finite elements, Math. Comp. 68 (1999), no. 228, 1325-1346. https://doi.org/10.1090/S0025-5718-99-01166-7
- R. Hiptmair, Multigrid method for Maxwell's equation, SIAM J. Numer. Anal. 36 (1998), no. 1, 204-225. https://doi.org/10.1137/S0036142997326203
- F. Brezzi and M. Fortin, Mixed And Hybrid Finite Element Methods, Springer Series in Computational Mathematics, Band 15, Springer-Verlag, 1991.
- L. R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483-493. https://doi.org/10.1090/S0025-5718-1990-1011446-7
- A. Alonso and A. Valli, An optimal domain decomposition preconditioner for low-frequency time-harmonic Maxwell equations, Math. Comp., 68 (1999), pp. 607-631. https://doi.org/10.1090/S0025-5718-99-01013-3
- M. Maischak, Webpage of the software package maiprogs, www.ifam.uni-hannover.de/-maiprogs.