DOI QR코드

DOI QR Code

Study on Improvement in Numerical Method for Two-phase Flows Including Surface Tension Effects

표면장력 효과를 고려한 이상유동 해석법 개선에 관한 연구

  • Park, Il-Ryong (Department of Naval Architecture and Ocean Engineering, Dong-Eui University)
  • 박일룡 (동의대학교 조선해양공학과)
  • Received : 2013.09.05
  • Accepted : 2013.10.10
  • Published : 2013.10.31

Abstract

The present paper proposes a coupled volume-of-fluid (VOF) and level-set (LS) method for simulating incompressible two-phase flows that include surface tension effects. The interface of two fluids and its motion are represented by a VOF method designed using high-resolution differencing schemes. This hybrid method couples the VOF method with an LS distancing algorithm in an explicit way to improve the calculation of the normal and curvature of the interface. It is developed based on a rather simple algorithm to be efficient for various practical applications. The accuracy and convergence properties of the method are verified in a simulation of a single gas bubble rising in a three-dimensional flow with a large density ratio.

Keywords

References

  1. Ahn, H.T., Shashkov, M., 2009. Adaptive Moment-Of-Fluid Me thod. Journal of Computational Physics 228(8), 2792-2821. https://doi.org/10.1016/j.jcp.2008.12.031
  2. Brackbill, J.U., Kothe, D.B., Zemach, C., 1992. A Continum Method for Modeling Surface Tension. Journal of Computational Physics 100(1), 335-354. https://doi.org/10.1016/0021-9991(92)90240-Y
  3. Clift, R., Grace, J.R., Weber, M.E., 1978. Bubbles Drops and Particles. New York: Academic Press. ISBN 0-12-176950-X.
  4. Croce, R., Griebel, M., Schweitzer, M.A., 2004. A Parallel Levelset Approach for Two-phase Flow Problems with Surface Tension in Three Space Dimensions, Technical Report 157, Sonderforschungsbereich 611, Universitat Bonn.
  5. Ferziger, J.H., Peric, M., 1996. Computational Methods for Fluid Dynamics, Springer-Verlag, Berlin.
  6. Fluent., 2006. Fluent 6.3 Users Guide. Fluent Inc.
  7. Hao, Y., Prosperetti, A., 2004. A Numerical Method for Three- Dimensional Gas-Liquid Flow Computations. Journal of Computational Physics 196(1), 126-144. https://doi.org/10.1016/j.jcp.2003.10.032
  8. Hirt, C.R., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39:201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  9. Jeong, S.M., Hwang, S.C., Park, J.C., 2013. Applications of Three- Dimensional Multiphase Flow Simulations for Prediction of Wave Impact Pressure. Journal of Ocean Engineering and Technology 27(2), 39-46. https://doi.org/10.5574/KSOE.2013.27.2.039
  10. Jung, J.H., Yoon, H.S., Kwon, K.J., Cho, S.J., 2011. Numerical Simulation of Flow around Free-rolling Rectangular Barge in Regular Waves. Journal of Ocean Engineering and Technology 25(2), 15-20.
  11. Kim, D.S., Lee, K.H., 2002. Numerical Analysis of Wave Transformation of Permeable Breakwater Permitting Wave Overtopping. Journal of Ocean Engineering and Technology 16(2), 1-5.
  12. Kim, K.M., Heo, J.K., Jeong, S.M., Park, J.C., Kim, W.J., Cho, Y.J., 2013. Estimation of Wave Loads Acting on Stationary Floating Body Using Viscous Numerical Wave Tank Technique. Journal of Ocean Engineering and Technology 27(3), 43-52.
  13. Lee, K.H., Lee, S.K., Sin, D.H., Kim, C.H., Kim, D.S., 2007. Wave Forces Acting on Vertical Cylinder and Their Wave Transformations by 3-Dimensional VOF Method. Journal of Ocean Engineering and Technology 21(2), 12-21.
  14. Leonard, B.P., 1991. The ULTIMATE Conservative Difference Scheme Applied to Unsteady One-dimensional Advection. Computer Methods in Applied Mechanics and Engineering 88(1), 17-74. https://doi.org/10.1016/0045-7825(91)90232-U
  15. Liu, Z., Hyun, B.S., Jin, J.Y., 2008. Numerical Analysis of Wave Field in OWC Chamber Using VOF Model. Journal of Ocean Engineering and Technology 22(2), 1-6.
  16. Muzaferija, S., Peric, M., Sames, P., Schellin, T., 1998. A Two- Fluid Navier-Stokes Solver to Simulate Water Entry. Proceedings of the 22nd Symposium on Naval Hydrodynamics, Washington, DC, U.S.A.
  17. Nam, B.W., Hong, S.Y., Kim, Y.H., 2010. Numerical Simulation of Wave Forces acting on Fixed Offshore Structures Using Hybrid Scheme. Journal of Ocean Engineering and Technology 24(6), 16-22.
  18. Noh, W., Woodward, P., 1976. SLIC-Simple Line Interface Calculation. In Proceedings of the Fifth International Conference on Fluid Dynamics, Vooren AV, Zandbergen P (eds). Lecture Notes in Physics, vol. 59. Springer: Berlin, 330.
  19. Park, I.R., Jung, K.H., 2012. Study on the Effects of Surface Roughness and Turbulence Intensity on Dam-break Flows. Journal of the Society of Naval Architects of Korea 49(3), 247-253. https://doi.org/10.3744/SNAK.2012.49.3.247
  20. Park, I.R., Kim, K.S., Kim, J., Van, S.H., 2010. Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method. Journal of the Society of Naval Architects of Korea 47(3), 279-290. https://doi.org/10.3744/SNAK.2010.47.3.279
  21. Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Taylor & Francis. ISBN 978-0-89116-522-4.
  22. Seo, J.H., Seol, D.M., Lee, J.H., Rhee, S.H., 2010. Flexible CFD Meshing Strategy for Prediction of Ship Resistance and Propulsion Performance. International Journal of Naval Architecture and Ocean Engineering 2(3), 139-145. https://doi.org/10.3744/JNAOE.2010.2.3.139
  23. Son, G., 2003. Efficient Implementation of a Coupled Level-set and Volume-of-fluid Method for Three-Dimensional Incompressible Two-phase Flows. Numerical Heat Transfer B 43(6), 549-565. https://doi.org/10.1080/713836317
  24. Sussman, M., Fatemi, E., Smerera, P. and Osher, S., 1997. An Improved Level-Set Method for Incompressible Two-Phase Flows. Computers and Fluids 27(5-6), 663-680.
  25. Sussman, M., Smith, K.M., Hussaini, M.Y., Ohta, M., Zhi-Wei, R., 2007. A Sharp Interface Method for Incompressible Twophase Flows. Journal of Computational Physics 221(2), 469-505.a https://doi.org/10.1016/j.jcp.2006.06.020
  26. Ubbink, O., Issay, R.I., 1999. A Method for Capturing Sharp Fluid Interfaces on Arbitrary Meshes. Journal of Computational Physics 153(1), 26-50. https://doi.org/10.1006/jcph.1999.6276
  27. Unverdi, S.O., Tryggvason, G., 1992. A Front-Tracking Method for Viscous, Incompressible, Multi-Fluid Flows. Journal of Computational Physics 100(1), 25-37. https://doi.org/10.1016/0021-9991(92)90307-K
  28. Youngs, D.L., 1987. An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code. Technical Report AWRE/ 44/92/35, Atomic Weapons Research Establishment.
  29. Van Leer, B.J., 1979. Towards the Ultimate Conservative Difference Scheme. V. A Second Order Sequel to Godunov's Method. Journal of Computational Physics 32(1), 101-136. https://doi.org/10.1016/0021-9991(79)90145-1