DOI QR코드

DOI QR Code

A Dynamic Camera Actuation System for Simultaneous in Situ Image Acquisition on a Lab-on-a-disk

랩-온-어-디스크를 위한 실시간 영상 조절 및 이미지 획득 시스템

  • 라문우 (포항공과대학교 기계공학과) ;
  • 박상민 (포항공과대학교 기계공학과) ;
  • 박성제 (포항공과대학교 기계공학과) ;
  • 김동성 (포항공과대학교 기계공학과)
  • Received : 2013.09.30
  • Accepted : 2013.10.24
  • Published : 2013.11.01

Abstract

In this study, a dynamic camera actuation system for simultaneous in situ image acquisition is developed to achieve real-time observation of transient liquid flow on a lab-on-a-disk. A disk-type electric circuit, namely circuit-on-a-disk, co-rotated with the lab-on-a-disk improves the dynamic image acquisition ability in terms of a frame rate. The circuit-on-a-disk is comprised of a camera connected with a motor, a microprocessor and a wireless communication module. The camera connected with the motor enables to realize dynamic tracking of a transient flow and real-time image acquisition. The obtained images can be simultaneously transferred by a video/audio transmitter unit to a personal computer. Also, the microprocessor receives signals from the personal computer, and then controls the focusing position of the camera. We are expecting that heaters, sensors, and light sources also can be integrated on the circuit-on-a-disk, and they will enable various functional actuations as well as precise image acquisition.

Keywords

References

  1. Madou, M., Zoval, J., Jia, G., Kido, H., Kim, J., and Kim, N., "Lab on a CD," Annu Rev Biomed Eng, Vol. 8, No. pp. 601-628, 2006. https://doi.org/10.1146/annurev.bioeng.8.061505.095758
  2. Ducree, J., Haeberle, S., Lutz, S., Pausch, S., Stetten, F. v., and Zengerle, R., "The Centrifugal Microfluidic Bio-disk Platform," J Micromech Microeng, Vol. 17, No. 7, pp. S103-S115, 2007. https://doi.org/10.1088/0960-1317/17/7/S07
  3. Schembri, C. T., Burd, T. L., Kopfsill, A. R., Shea, L. R., and Braynin, B., "Centrifugation and Capillarity Integrated into a Multiple Analyte Whole-Blood Analyzer," Journal of Automatic Chemistry, Vol. 17, No.3, pp. 99-104, 1995. https://doi.org/10.1155/S1463924695000174
  4. Lee, B. S., Lee, Y. U., Kim, H. S., Kim, T. H., Park, J., Lee, J. G., and et al., "Fully Integrated Lab-on-a-disc for Simultaneous Analysis of Biochemistry and Immunoassay from Whole Blood," Lab Chip, Vol. 11, No. 1, pp. 70-78, 2011. https://doi.org/10.1039/c0lc00205d
  5. Duffy, D. C., Gillis, H. L., Lin, J., Sheppard, N. F., and Kellogg, G. J., "Microfabricated Centrifugal Microfluidic Systems: Characterization and Multiple Enzymatic Assays," Anal Chem, Vol. 71, No. 20, pp. 4669-4678, 1999. https://doi.org/10.1021/ac990682c
  6. Lai, S., Wang, S., Luo, J., Lee, L. J., Yang, S. T., and Madou, M. J., "Design of a Compact Disk-like Microfluidic Platform for Enzyme-linked Immunosorbent Assay," Anal Chem, Vol. 76, No. 7, pp. 1832-1837, 2004. https://doi.org/10.1021/ac0348322
  7. Jia, G. Y., Ma, K. S., Kim, J., Zoval, J. V., Peytavi, R., Bergeron, M. G., and et al., "Dynamic Automated DNA Hybridization on a CD (compact disc) Fluidic Platform," Sensor Actuat B-Chem, Vol. 114, No. 1, pp. 173-181, 2006. https://doi.org/10.1016/j.snb.2005.04.043
  8. Cho, Y. K., Lee, J. G., Park, J. M., Lee, B. S., Lee, Y., and Ko, C., "One-step Pathogen Specific DNA Extraction from Whole Blood on a Centrifugal Microfluidic Device," Lab Chip, Vol. 7, No. 5, pp. 565-573, 2007. https://doi.org/10.1039/b616115d
  9. Puckett, L. G., Dikici, E., Lai, S., Madou, M., Bachas, L. G., and Daunert, S., "Investigation into the Applicability of the Centrifugal Microfluidics Platform for the Development of Protein-ligand Binding Assays Incorporating Enhanced Green Fluorescent Protein as a Fluorescent Reporter," Anal Chem, Vol. 76, No. 24, pp. 7263-7268, 2004. https://doi.org/10.1021/ac049758h
  10. Honda, N., Lindberg, U., Andersson, P., Hoffmann, S., and Takei, H., "Simultaneous Multiple Immunoassays in a Compact Disc-shaped Microfluidic Device Based on Centrifugal Force," Clin Chem, Vol. 51, No. 10, pp. 1955-1961, 2005. https://doi.org/10.1373/clinchem.2005.053348
  11. Tamarit-Lopez, J., Morais, S., Puchades, R., and Maquieira, A., "Use of Polystyrene Spin-coated Compact Discs for Microimmunoassaying," Anal Chim Acta, Vol. 609, No. 1, pp. 120-130, 2008. https://doi.org/10.1016/j.aca.2007.12.028
  12. Lee, B. S., Lee, J. N., Park, J. M., Lee, J. G., Kim, S., Cho, Y. K., and et al., "A Fully Automated Immunoassay from Whole Blood on a Disc," Lab Chip, Vol. 9, No. 11, pp. 1548-1555, 2009. https://doi.org/10.1039/b820321k
  13. Madou, M., Lee, J., Daunert, S., Lai, S., and Shih, C., "Design and Fabrication of CD-like Microfluidic Platforms for Diagnostics: MIcrofluidic Functions," Biomed Microdevices, Vol. 3, No. 3, pp. 245-254, 2001. https://doi.org/10.1023/A:1011419515576
  14. Hoffmann, H., Riegger, L., Bundgaard, F., Mark, D., Zengerle, R., and Ducree, J., "Optical Non-contact Localization of Liquid-gas Interfaces on Disk during Rotation for Measuring Flow Rates and Viscosities," Lab Chip, Vol. 12, No. 24, pp. 5231-5236, 2012. https://doi.org/10.1039/c2lc40842b
  15. Abi-Samra, K., Kim, T. H., Park, D. K., Kim, N., Kim, J., Kim, H., Cho, Y. K., and Madou, M., "Electrochemical Velocimetry on Centrifugal Microfluidic Platforms," Vol. 13, No. 16, pp. 3253-3260, 2013. https://doi.org/10.1039/c3lc50472g
  16. Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., and et al., "Passive Mixing in a Three-dimensional Serpentine Microchannel," J. Microelectromech S, Vol. 9, No. 2, pp. 190-197, 2000. https://doi.org/10.1109/84.846699
  17. Kim, D. S., Lee, S. H., Kwon, T. H., and Ahn, C. H., "A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection," Lab Chip, Vol. 5, No. 7, pp. 739-747, 2005. https://doi.org/10.1039/b418314b
  18. La, M., Park, S., Kim, H., Park, J., Ahn, K., Ryew, S., and et al., "A Centrifugal Force-based Serpentine Micromixer (CSM) on a Plastic Lab-on-a-disk for Biochemical Assays," Microfluid Nanofluid, Vol. 15, No. 1, pp. 87-98, 2013. https://doi.org/10.1007/s10404-012-1127-z
  19. Ryu, S. P., Park, J. Y., and Han, S. Y., "Optimum Design of an Active Micro-mixer using Successive Kriging Method," Int. J. Precis. Eng. Manuf., Vol. 12, No. 5, pp. 849-855, 2011. https://doi.org/10.1007/s12541-011-0113-9