DOI QR코드

DOI QR Code

수면단계 분석을 위한 특징 선택 알고리즘 설계

The Design of Feature Selecting Algorithm for Sleep Stage Analysis

  • 이지은 (연세대학교 일반대학원 생체공학협동과정) ;
  • 유선국 (연세대학교 의과대학 의학공학교실)
  • Lee, JeeEun (Graduate School of Biomedical Engineering, Yonsei University) ;
  • Yoo, Sun K. (Department of Medical Engineering, Yonsei University College of Medicine)
  • 투고 : 2013.07.10
  • 발행 : 2013.10.25

초록

본 연구의 목적은 수면상태 분석을 위한 분류기를 설계해줌과 동시에 생체신호를 기반으로 하여 수면상태 판별에 유효한 주요 특징벡터들을 추출함에 있다. 수면은 인간의 삶에 중요한 영향을 끼친다. 따라서 사람들이 수면부족 혹은 수면장애를 겪게 되면 집중력 감퇴, 인지기능 장애 등의 문제를 가질 우려가 생기게 되므로, 수면단계 판별에 관한 많은 연구들이 이루어지고 있다. 본 연구에서는 피험자가 수면을 취하는 동안 피험자의 생체신호를 획득하였다. 획득 된 생체신호로부터 필터링 등의 전처리 과정을 통하여 특징들을 추출하여 주었다. 추출된 특징들은 유전 알고리즘과 신경망을 결합하여 만든 새로운 알고리즘의 입력으로 사용되었으며, 알고리즘은 수면단계 분석을 위하여 높은 가중치를 가지는 특징을 선택하여 주었다. 이에 따른 결과로 뇌파 신호와 심전도 신호 모두 사용 시 알고리즘의 정확도는 약 90.26%가 나왔으며, 선택되어진 특징은 뇌파 신호의 ${\alpha}$파와 ${\delta}$파의 주파수 파워와 심전도 신호의 SDNN(Standard deviation of all normal RR intervals)이다. 선택된 특징은 수면상태를 분류하는데 중요한 역할을 함을 알고리즘을 반복적으로 수행하여 확인하였고, 이 연구는 추후 수면장애의 진단 혹은 수면분석의 지침을 만드는데 사용가능할 것으로 사료된다.

The aim of this study is to design a classifier for sleep stage analysis and select important feature set which shows sleep stage well based on physiological signals during sleep. Sleep has a significant effect on the quality of human life. When people undergo lack of sleep or sleep-related disease, they are likely to reduced concentration and cognitive impairment affects, etc. Therefore, there are a lot of research to analyze sleep stage. In this study, after acquisition physiological signals during sleep, we do pre-processing such as filtering for extracting features. The features are used input for the new combination algorithm using genetic algorithm(GA) and neural networks(NN). The algorithm selects features which have high weights to classify sleep stage. As the result of this study, accuracy of the algorithm is up to 90.26% with electroencephalography(EEG) signal and electrocardiography(ECG) signal, and selecting features are alpha and delta frequency band power of EEG signal and standard deviation of all normal RR intervals(SDNN) of ECG signal. We checked the selected features are well shown that they have important information to classify sleep stage as doing repeating the algorithm. This research could use for not only diagnose disease related to sleep but also make a guideline of sleep stage analysis.

키워드

참고문헌

  1. Kumar, Velayudhan Mohan, "Sleep and sleep disorders," Indian Journal of Chest Diseases and Allied Sciences, vol. 50, no. 1, pp. 129, 2008.
  2. Šušmáková, Kristina, "Human sleep and sleep EEG," Measurement Science Review, vol. 4, no. 2, pp. 59-74, 2004.
  3. Mcdonald, David G, et al, "Studies of Spontaneous Electro dermal Responses in Sleep," Psychophysiology, vol. 13, no. 2, pp. 128-134, 1976. https://doi.org/10.1111/j.1469-8986.1976.tb00087.x
  4. Penzel, T, "Is heart rate variability the simple solution to diagnose sleep apnoea?," European Respiratory Journal, vol. 22, no. 6, pp. 870-971, 2003. https://doi.org/10.1183/09031936.03.00102003
  5. Burgess, Helen J, et al, "Sleep and circadian influences on cardiac autonomic nervous system activity," American Journal of Physiology-Heart and Circulatory Physiology, vol. 273, no. 4, pp. 1761-1768, 1997. https://doi.org/10.1152/ajpheart.1997.273.4.H1761
  6. Chung Ki Lee, Quantitative Analysis of Affective States based on Psycho-physiological Research using Biosignal Processing Technique, The Graduate School Yonsei University, 2011.
  7. Wolpert, Edward A, "A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects," Archives of General Psychiatry, vol. 20, no. 2, pp. 246, 1969.
  8. Agarwal, Rajeev, and Jean Gotman, "Computer-assisted sleep staging," Biomedical Engineering, IEEE Transactions on, vol. 48, no. 12, pp. 1412-1423, 2001. https://doi.org/10.1109/16.930660
  9. Niedermeyer, Ernst, and Fernando H. Lopes da Silva, eds, Electroencephalography: basic principles, clinical applications, and related fields, Wolters Kluwer Health, 2005.
  10. Schwilden, Helmut, "Concepts of EEG processing: from power spectrum to bispectrum, fractals, entropies and all that," Best Practice &Research Clinical Anaesthesiology, vol. 20, no. 1, pp. 31-48, 2006. https://doi.org/10.1016/j.bpa.2005.09.001
  11. Baharav, A, et al, "Fluctuations in autonomic nervous activity during sleep displayed by power spectrum analysis of heart rate variability," Neurology, vol. 45, no. 6, pp. 1183-1187, 1995. https://doi.org/10.1212/WNL.45.6.1183
  12. Bušek, P, et al, "Spectral analysis of heart rate variability in sleep," Physiol res, vol. 54, pp. 369-376, 2005.
  13. Malik, Marek, "Heart rate variability," Annals of Noninvasive Electrocardiology, vol. 1, no. 2, pp. 151-181, 1996. https://doi.org/10.1111/j.1542-474X.1996.tb00275.x
  14. Sinha, Rakesh Kumar, "Artificial neural network and wavelet based automated detection of sleep spindles, REM sleep and wake states," Journal of medical systems, vol. 32, no. 4, pp. 291-299, 2008. https://doi.org/10.1007/s10916-008-9134-z
  15. Heo, Gi-Su, Oh, Il-Seok, "Genetic Algorithm for Node Pruning of Neural Networks," Journal of the Institute of Electronics Engineers of Korea. CI, vol. 46, no. 2, pp. 65-74, 2009.
  16. Dybowski, Richard, et al, "Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm," The Lancet, vol. 347, no. 9009, pp. 1146-1150, 1996. https://doi.org/10.1016/S0140-6736(96)90609-1
  17. Heckerling, Paul S, et al, "Use of genetic algorithms for neural networks to predict community-acquired pneumonia," Artificial Intelligence in Medicine, vol. 30, no. 1, pp. 71-84, 2004. https://doi.org/10.1016/S0933-3657(03)00065-4
  18. Bishop, Christopher M, Neural networks for pattern recognition, Oxford university press, 1995.
  19. Astion, M. L, and P. Wilding, "The application of backpropagation neural networks to problems in pathology and laboratory medicine," Archives of pathology &laboratory medicine, vol. 116, no. 10, pp. 995, 1992.
  20. Penny, Will, and David Frost, "Neural networks in clinical medicine," Medical Decision Making, vol.16, no.4, pp. 386-398, 1996. https://doi.org/10.1177/0272989X9601600409
  21. Forrest, Stephanie. "Genetic algorithms: principles of natural selection applied to computation," Science, vol. 261, no. 5123, pp. 872-878, 1993. https://doi.org/10.1126/science.8346439
  22. Bath, Peter A, et al, "New approach to risk determination: development of risk profile for new falls among community-dwelling older people by use of a Genetic Algorithm Neural Network(GANN)," Journals of Gerontology- Biological Sciences and Medical Sciences, vol. 55, no. 1, pp. 17, 2000. https://doi.org/10.1093/gerona/55.1.M17
  23. Thomson, J. Richard, and Rudolph J. Klein, "Recent Advances in Biomedical Engineering," Bios, pp. 148-158, 1983.
  24. Gunes, Salih, et al, "Sleep spindles recognition system based on time and frequency domain features," Expert Systems with Applications, vol. 38, no. 3, pp. 2455-2461, 2011. https://doi.org/10.1016/j.eswa.2010.08.034
  25. Sung-Pil Cho, Ho-Sun Choi, Kyoung-Joung Lee, "A Study on the Detection of Obstructive Sleep Apnea Using ECG," Conference Journal of the Institute of Electronics Engineers of Korea, pp. 2879-2882, 2003.