DOI QR코드

DOI QR Code

비중첩 영역 분할기법 기반 병렬해석의 정확도 분석

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method

  • 탁문호 (한양대학교 건설환경공학과) ;
  • 송유섭 (한양대학교 건설환경공학과) ;
  • 전혜관 (한양대학교 건설환경공학과) ;
  • 박대효 (한양대학교 건설환경공학과)
  • Tak, Moonho (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Song, Yooseob (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Jeon, Hye-Kwan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Park, Taehyo (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2013.07.15
  • 심사 : 2013.08.02
  • 발행 : 2013.08.30

초록

본 논문에서는 새로운 비중첩 영역 분할 기법을 바탕으로 한 병렬해석의 정확도 분석이 수행된다. Tak 등(2013)에 의해 제안된 이 방법에서 분할된 하위도메인들은 서로 중첩되지 않으며 계면요소(interfacial element)라 불리는 가상연결유한요소를 통해 서로 간의 관계가 결정된다. 이 접근법의 주요 장점은 영역 분할시 floating 도메인에서 발생할 수 있는 특이강성행렬(singular stiffness matrix)을 계면요소의 결합을 이용하여 가역행렬(invertible matrix)로 변환할 수 있다는 것과 기존의 FETI법에 비하여 해석시간과 스토리지(storage) 사용을 줄일 수 있다는 것이다. 반면에 3개 이상의 하위도메인들이 한 점에서 연결되는 경우를 의미하는 cross point에서는 해석의 정확도가 저하되는 경향이 나타났다. 따라서 본 논문에서는 새로운 비중첩 영역 분할기법에 대해 다양한 영역분할의 경우에 따라 발생하는 하나의 cross point에 접촉하는 하위도메인의 개수에 따른 정확도 분석이 수행되고 정확도가 저하되는 원인분석 및 대책이 논의된다.

In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

키워드

참고문헌

  1. Cuthill, E., Mckee, J. (1969) Reducing the Bandwidth of Sparse Symmetric Matrices, ACM '69 Proceedings of the 1969 24th National Conference, pp.157-172.
  2. Duff, I.S., Reid, J.K. (1973) The Multifrontal Solution of Indefinite Sparse Symmetric Linear Equations, ACM Transactions on Mathematical Software (TOMS), 9(3), pp.302-325.
  3. Farhat, C., Roux, F.X. (1991) A Method of Finite Element Tearing and Interconnecting and Its Parallel Solution Algorithms, International Journal of Numerical Methods in Engineering, 32(6), pp.1205-1227. https://doi.org/10.1002/nme.1620320604
  4. Irons, B.M. (1970) A Frontal Solution Scheme for Finite Element Analysis, International Journal of Numerical Methods in Engineering, 2(1), pp.5-32. https://doi.org/10.1002/nme.1620020104
  5. Lee, K.J., Tak, M., Park, T. (2010) The Mixed Finite Element Analysis for Saturated Porous Media Using FETI Method, Journal of the Computational Structural Engineering, 23(6), pp.693-702.
  6. Schwartz, H.A. (1870) Uber einen Grenzubergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zurich, 15, pp.272-286.
  7. Tak, M., Park, T. (2013) High Scalable Nonoverlapping Domain Decomposition Method Using a Direct Method for Finite Element Analysis, Computer Methods in Applied Mechanics and Engineering, 264, pp.108-128. https://doi.org/10.1016/j.cma.2013.05.013