DOI QR코드

DOI QR Code

밀도법 기반 위상 최적설계의 실험적 검증

Experimental Validation of Topology Design Optimization

  • 차송현 (서울대학교 조선해양공학과 아이소-지오메트릭 최적설계 창의연구단) ;
  • 이승욱 (서울대학교 조선해양공학과 아이소-지오메트릭 최적설계 창의연구단) ;
  • 조선호 (서울대학교 조선해양공학과 아이소-지오메트릭 최적설계 창의연구단)
  • Cha, Song-Hyun (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design, Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Lee, Seung-Wook (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design, Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Cho, Seonho (National Creative Research Initiatives(NCRI) Center for Isogeometric Optimal Design, Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • 투고 : 2013.06.17
  • 심사 : 2013.08.02
  • 발행 : 2013.08.30

초록

본 논문에서는 밀도법 기반 위상 최적설계를 통해 얻어진 수치 결과를 바탕으로 CAD 모델을 구성하고 이를 3차원 프린터로 제작하여 실험적으로 최적설계를 검증하였다. 위상 최적설계 과정에서는 체커보드(Checkerboard) 현상이나 잔가지가 종종 나타나는데, 이는 최적설계 구조물을 실제로 제작함에 있어서 어려움을 준다. 이러한 문제점을 해결하기 위하여 민감도 필터링과 모폴로지 기법을 사용하였다. 엄밀한 검증을 위하여 수치 모델과 실험 모델의 부피율을 일치시켰다. 위상 최적설계를 포함한 다양한 설계에 대하여 실험을 통해 비교하여 최적설계 구조물이 가장 높은 강성을 가지고 있음을 확인하였으며 컴플라이언스에 대한 실험결과는 수치해석 값과 잘 일치함을 확인하였다.

From the numerical results of density-based topology design optimization, a CAD geometric model is constructed and fabricated using 3D printer to experimentally validate the optimal design. In the process of topology design optimization, we often experience checkerboard phenomenon and complicated branches, which could result in the manufacturing difficulty of the obtained optimal design. Sensitivity filtering and morphology methods are used to resolve the aforementioned issues. Identical volume fraction is used in both numerical and experimental models for precise validation. Through the experimental comparison of stiffness in various designs including the optimal design, it turns out that the optimal design has the highest stiffness and the experimental result of compliance matches very well with the numerical one.

키워드

참고문헌

  1. Bendoe, M.P., Kikuchi, N. (1988) Generating Optimal Topologies in Structural Design Using a Homogenization Method, Computer Methods in Applied Mechanics and Engineering, 71, pp.197-224. https://doi.org/10.1016/0045-7825(88)90086-2
  2. Bendsoe, M.P., Sigmund, O. (2002) Topology Optimization; Theory, Methods and Applications, Springer, New York.
  3. Cho, S., Jung, H. (2003) Design Sensitivity Analysis and Topology Optimization of Displacement-loaded Nonlinear Structures, Journal of Computer Methods in Applied Mechanics and Engineering, 192, pp.2539-2553. https://doi.org/10.1016/S0045-7825(03)00274-3
  4. Haug, E.J., Choi, K.K., Komkov, V. (1986) Design Sensitivity Analysis of Structural Systems, Academic Press, New York.
  5. Kim, M.-G., Kim, J.-H., Cho, S. (2010) Topology Design Optimization of Heat Conduction Problems using Adjoint Sensitivity Analysis Method, Journal of Computational Structural Engineering, 23(6), pp.683-691.
  6. Lee, D.H., Min, S.J. (2003) CAD Model Construction Using Topology Image, Transactions of the Korean Society of Mechanical Engineers A, 27(11), pp.1925-1932. https://doi.org/10.3795/KSME-A.2003.27.11.1925
  7. Sigmund, O. (1997) On the Design of Compliant Mechanisms Using Topology Optimization, Mech. Struct. & Mach. 25(4), pp.493-524. https://doi.org/10.1080/08905459708945415
  8. Sigmund, O., Peterson, J. (1998) Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Meshdependencies and Local Minima, Structural Optimization, 16, pp.68-75. https://doi.org/10.1007/BF01214002
  9. Sigmund, O. (2001) A 99 line Topology Optimization Code Written in Matlab, Struct Multidisc Optim, 21, pp.120-127. https://doi.org/10.1007/s001580050176

피인용 문헌

  1. Design optimization of a knee joint for an active transfemoral prosthesis for weight reduction vol.31, pp.12, 2017, https://doi.org/10.1007/s12206-017-1134-9
  2. Using Topology Optimization, Light Weight Design of Vehicle Mounted Voltage Converter for Impact Loading vol.31, pp.6, 2018, https://doi.org/10.7734/COSEIK.2018.31.6.353