DOI QR코드

DOI QR Code

마할라노비스-다구치 시스템과 로지스틱 회귀의 성능비교 : 사례연구

Performance Comparison of Mahalanobis-Taguchi System and Logistic Regression : A Case Study

  • 이승훈 (동의대학교 산업경영공학과) ;
  • 임근 (육군종합정비창 정비기술연구소)
  • Lee, Seung-Hoon (Department of Industrial and Management Engineering, Dong-Eui University) ;
  • Lim, Geun (Maintenance Technology Laboratory, Korea Military Consolidated Maintenance Depot)
  • 투고 : 2013.06.28
  • 심사 : 2013.09.02
  • 발행 : 2013.10.15

초록

The Mahalanobis-Taguchi System (MTS) is a diagnostic and predictive method for multivariate data. In the MTS, the Mahalanobis space (MS) of reference group is obtained using the standardized variables of normal data. The Mahalanobis space can be used for multi-class classification. Once this MS is established, the useful set of variables is identified to assist in the model analysis or diagnosis using orthogonal arrays and signal-to-noise ratios. And other several techniques have already been used for classification, such as linear discriminant analysis and logistic regression, decision trees, neural networks, etc. The goal of this case study is to compare the ability of the Mahalanobis-Taguchi System and logistic regression using a data set.

키워드

참고문헌

  1. Cudney, E., Hong, J., Jugulum, R., Paryani, K., Ragsdell, K., and Taguchi, G. (2007), An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition, Journal of Industrial and Systems Engineering, 1(2), 139-150.
  2. Cudney, E., Hong, J., Drain, D., Paryani, K., Ragsdell, K., and Sharma, N. (2009), A Comparison of the Mahalanobis-Taguchi System to A Standard Statistical Method for Defect Detection, Journal of Industrial and Systems Engineering, 2(4), 250-258.
  3. Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical Learning : Data Mining, Inference, and Prediction, 2nd ed., Springer.
  4. Hosmer, D.W. and Lemeshow, S. (2000), Applied Logistic Regression, 2nd ed, John Wiley and Sons, Inc.
  5. Izenman, A. J. (2008), Modern Multivariate Statistical Techniques : Regression, Classification and Manifold Learning, Springer.
  6. Johnson, R. A. and Wichern, D. W. (1992), Applied Multivariate Statistical Analysis, Englewood Ciffs, Prentice Hall.
  7. Jugulum, R. and Monplaisir, L. (2002), Comparison between Mahalanobis-Taguchi-System and Artificial Neural Networks, Journal of Quality Engineering Society, 10(1), 60-73.
  8. Kim, S. B., Tsui, K.-L., Sukchotrat, T., and Chen, V. (2009), A Comparison Study and Discussion of the Mahalanobis-Taguchi system. International Journal of Industrial and Systems Engineering, 4(6), 631-644. https://doi.org/10.1504/IJISE.2009.026768
  9. Sigillito, V. G., Wing, S. P., Hutton, L. V., and Baker, K. B. (1989), Classification of Radar Returns from the Ionosphere using Neural Networks, Johns Hopkins APL Technical Digest, 10, 262-266.
  10. Taguchi, G., Chowdury, S., and Wu, Y. (2001), The Mahalanobis Taguchi System, McGraw Hill, New York.
  11. Taguchi, G. and Jugulum, R. (2000), New Trends in Multivariate Diagnosis, Indian Journal of Statistics, 62, Series B, 233-248.
  12. Taguchi, G. and Jugulum, R. (2002), The Mahalanobis-Taguchi Strategy : A pattern technology system, John Wiley and Sons.
  13. Tan, P.-N., Steinbach, M., and Kumar. V. (2006), Introduction to Data Mining, Addison-Wesley.
  14. Vardhan, R. V., Sukanya, D. J. V., and Arthanari, T. S. (2012), Criteria of Classification and Measures of Performance, International Journal of Advance Mathemetics and Mathematical Stiences, 1(1), 41-48.
  15. Wang, H.-C., Chiu, C.-C., and Su, C.-T. (2004), Data Classification using the Mahalanobis-Taguchi System, Journal of the Chinese Institute of Industrial Engineers, 21(6), 606-618. https://doi.org/10.1080/10170660409509440
  16. Woodall, W. H., Koulelik, R., Tsui, K. L., Kim, S. B., Stoumbos, Z. G., and Carvounis, C. P. (2003), A Review and Analysis of the Mahalanobis Taguchi System, Technometrics, 45(1), 1-30. https://doi.org/10.1198/004017002188618626