DOI QR코드

DOI QR Code

Analysis on the Variability of Cerebral Cortex per Intellectual Category in Adolescents

청소년의 지능범주별 대뇌피질 변화성 분석 연구

  • Received : 2013.05.27
  • Accepted : 2013.06.27
  • Published : 2013.06.30

Abstract

The brains of adolescents experience rapid changes, which has been studied to prove relatedness between neuroanatomical properties and IQ. But, most previous studies infer the relatedness from purely cross-sectional data. This study not only measured the thickness of the cerebral cortex once, but traced its variability and the relatedness between IQ and this variability, which was presumed to be 75. Healthy adolescents (M=16yr. and 4month) were divided into 5-stage categories based on their intellectual ability and MRI scan was made twice every 6 months to measure the variablity of their cerebral cortex. As a result, a big difference in the variability of the cerebral cortex was shown based on their IQ. Three groups with an IQ of more than 120 showed a decrease in the thickness of the cerebral cortex in 11 brain regions, while two groups with an IQ lower than 120 showed an increase in the cerebral cortex thickness in 5 to 8 regions. It is presumed that the lower the IQ, the slower the maturation of the cerebral cortex.

청소년들의 뇌는 급속한 변화를 겪는다. 그동안 신경해부학적 특성과 일반지능(IQ)과의 관련성을 알아보기 위한 연구가 지속적으로 이뤄져 왔으나 대부분 단편적이었다. 본 연구는 단순히 대뇌 피질 두께를 한 번 측정한 것이 아니고, 대뇌 피질 두께의 변화를 추적하여 일반지능과 그 변화 간의 관련성을 추정하였다. 건강한 청소년 75명(M=16세 4개월)을 5단계의 지능범주별로 나눈 뒤 6개월의 간격을 두고 MRI 촬영을 두 번씩 하여 대뇌 피질 두께 변화를 알아냈다. 그 결과 일반지능 범주별로 대뇌 피질 두께 변화에 차이가 크게 나타났다. 일반지능이 120 이상인 세 그룹은 관찰 대상인 11개 뇌 영역의 대뇌 피질 두께가 모두 감소했으나, 그 이하의 두 개 그룹에서는 지능이 낮을수록 늘어나는 영역이 5~8개나 됐다. 이는 일반지능이 낮을수록 대뇌피질의 성숙이 늦어지는 것으로 추정할 수 있다.

Keywords

References

  1. 유승식 (2001). 실전응용을 중심으로 한 기능 자기공명영상 실험. 서울: 의학문화사.
  2. 이정모, 강은주 (2000). 두뇌 기능 지도화와 정보 처리 과정 이해. 전자공학학회지, 27(7), 49-61.
  3. Andreasen, N. C., Flaum, M., Swayze, V., O'Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., Yuh, W. T., (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150(1), 130-134. https://doi.org/10.1176/ajp.150.1.130
  4. Banich, M. T. (2009). 인지 신경과학과 신경심리학 [김명선, 강은주, 강연욱, 김현택, 역]. 서울: 시그마프레스. (원본출간년도: 2004)
  5. Bear, M. F., Paradiso, M. A., Connors, B. W. (2007). Neuroscience-Exploring the Brain (3rd Ed.). NY: Lippincott Williams & Wilkins.
  6. Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1-47.
  7. Choi, Y. Y., Shamosh, N. A., Cho, S. H., DeYoung, C. G., Lee, M. J., Kim, S. I., Cho, Z. H., Kim, K., Gray, J. R., & Lee, K. H. (2008). Multiple Bases of Human Intelligence Revealed by Cortical Thickness and Neural Activation. The Journal of Neuroscience, 28(41), 10323-10329. https://doi.org/10.1523/JNEUROSCI.3259-08.2008
  8. Cohen, J. D., Perlstein, W. M., Braver, T. S., Nystrom, L. E., Noll, D. C., Jonides, J., & Smith, E. E. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604-608. https://doi.org/10.1038/386604a0
  9. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Changes in grey matter induced by training. Nature, 427(6972), 311-312. https://doi.org/10.1038/427311a
  10. Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008). Changes in Gray Matter Induced by Learning-Revisited. PLoS ONE, 3(7), e2669. https://doi.org/10.1371/journal.pone.0002669
  11. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, O., Larsen, V. A., & Walhovd, K. B., (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 1667-1676. https://doi.org/10.1016/j.neuroimage.2010.05.041
  12. Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: Science and ethics. Nature Reviews Neuroscience, 5(6), 471-482. https://doi.org/10.1038/nrn1405
  13. Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J., Paek, J., Browning, H., & Buchsbaum, M. S. (1998). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199-217.
  14. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkier, M. T. (2004). Structural brain variation and general intelligence. Neuroimage, 23(1), 425-433. https://doi.org/10.1016/j.neuroimage.2004.04.025
  15. Huettel, S. A., Song, A. W., & McCarthy, G. (2004). Funtional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.
  16. Huettel, S. A., Song, A. W., & McCarthy, G. (2008). Functional magnetic resonance imaging. Sunderland, MA: Sinauer Associates.
  17. Kroger, J. K., Sabb, F. W., Fales, C. L., Bookheimer, S. Y., Cohen, M. S., & Holyoak, K. J. (2002). Recruitment of anterior dorsolateral prefrontal cortex in human reasoning: Aparametric study of relational complexity. Cerebral Cortex, 12(5), 477-485. https://doi.org/10.1093/cercor/12.5.477
  18. Mcdaniel, M. A. (2005). Big-Brained people are smater: A Meta-Analysis of the Relationship between In Vivo Brain Volume and Intelligence. Intelligence, 33(4), 337-346. https://doi.org/10.1016/j.intell.2004.11.005
  19. Mcdaniel, M. A., & Nguyen, N. T. (2002). A meta-analysis of the relationship between MRI-assessed brain volume and intelligence. Paper presented at the Third Annual Conference of the International Society of Intelligence Research. Nashville.
  20. Peters, M. (1995). Does brain size matter? A reply to Rushton and Ankney. Canadian Journal of Experimental Psychology, 49(4), 570-576. https://doi.org/10.1037/1196-1961.49.4.570
  21. Prabhakaran, V., Smith, J. A. L., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. E. (1997). Neural substrates of fluid reasoning: An fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cognitive Psychology, 33(1), 43-63. https://doi.org/10.1006/cogp.1997.0659
  22. Shaw, P., Greenstein, D., Lerch, J., Clasen, L., Lenroot, R., Gogtay, N., Evans, A., Papoport, J., & Giedd, J. (2006). Intellectual ability and cortical development in children and adolescents. Naure, 440(7084), 676-679.
  23. Shaw, P., Kabani, N. J., Lerch, J. P., Eckstrand, K., Lenroot, R., Gogtay, N., Greenstein, D., Clasen, L., Rapoport, J. L., Giedd, J. N., & Wise, S. P. (2008). Neurodevelopmental trajectories of the human cerebral cortex. The Journal of Neuroscience, 28(14), 3586-3594. https://doi.org/10.1523/JNEUROSCI.5309-07.2008
  24. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of working memory. Proc. Natl. Acad. Sci. USA, 95, 12061-12068. https://doi.org/10.1073/pnas.95.20.12061
  25. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223-8231. https://doi.org/10.1523/JNEUROSCI.1798-04.2004