DOI QR코드

DOI QR Code

Electrochemical Study on Energy Potential Levels with Pyrene Molecule

  • Kim, Hyungjoo (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University) ;
  • Li, Xiaochuan (College of Chemistry and Chemical Engineering, Henan Normal University) ;
  • Son, Young-A (Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University)
  • Received : 2013.08.16
  • Accepted : 2013.09.23
  • Published : 2013.09.27

Abstract

Pyrene based molecule has been synthesized through the reaction of pyrene-1-carboxaldehyde and 4- phenylthiosemicarbazide in this research. The pyrene based molecule showed specific optical properties such as absorption and emission changes after mixing with fluoride in DMSO. The phenomenon is induced by the interaction of the molecule and fluoride. This interaction may affect to electron distributions and potential energy levels. In this regard, synthesized pyrene based molecule has been investigated for its electron distributions and HOMO/LUMO energy levels depending on interaction with fluoride. The absorption measurement, cyclicvoltammograms and computational method were investigated to calculate and compare energy potential levels.

Keywords

References

  1. D. S. Park, Study or Electrode Reaction Characteristics by Cyclic Voltammetry, Poly. Sci. Technol., 14(3), 356(2003).
  2. C. J. Tonzola, M. M. Alam, W. Kaminsky, and S. A. Jenekhe, New n-Type Organic Semiconductors: Synthesis, Single Crystal Structures, Cyclic Voltammetry, Photophysics, Electron Transport, and Electroluminescence of Series of Diphenylanthrazolines, J. Am. Chem. Soc., 125(44), 13548(2003). https://doi.org/10.1021/ja036314e
  3. I. Losito, F. Palmisano, and P. G. Zambonin, O-Phenylenediamine Electropolymerization by Cyclic Voltammetry Combined Electrospray Ioization-Ion Tap Mass Spectrometry, Anal. Chem., 75(19), 4988 (2003). https://doi.org/10.1021/ac0342424
  4. Y. S. Kim, S. H. Kim, T. K. Kim, and Y. A. Son, Characteristics of HOMO/LUMO Potentials by Altering Substituents: Computational and Electrochemical Determination, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 20(5), 41(2008). https://doi.org/10.5764/TCF.2008.20.5.041
  5. Y. Niko, S. Kawauchi, and G. Knishi, Synthesis, Luminescence Properties, and Theoretical Insights of N-Alkyl-or Dialkyl-Pyrene-1-Carboxamide, Tetrahedron Lett., 52(38), 4843(2011). https://doi.org/10.1016/j.tetlet.2011.07.020
  6. D. A. Jose, D. K. Kumar, B. Ganguly, and A. Das, Efficient and Simple Colorimetric Fluoride Ion Sensor Based on Receptors Having Urea and Thiourea Binding Sites, Org. Lett., 6(20), 3445 (2004). https://doi.org/10.1021/ol048829w
  7. D. Jimenez, R. M. Manez, F. Sancenon, and J. Soto, Selective Fluoride Sensing Using Colorimetric Reagents Containing Anthraquinone and Urea or Thiourea Binding Sites, Tetraheron Lett., 43(15), 2823(2002). https://doi.org/10.1016/S0040-4039(02)00363-5
  8. M. Hu, Y. Wu, X. Tan, Y. Zhao, and Z. Ji, Fluoride-Selective Colorimetric Sensor Based on Thiourea Binding Site and Anthraquinone Reporter, Spectrochim. Act. A, 65(3-4), 633(2006). https://doi.org/10.1016/j.saa.2005.12.022
  9. A. Misra, M. Shahid, and P. Dwivedi, An Effecient Thiourea-Based Colorimetric Chemosensor for Naked-Eye Recognition of Fluoride and Acetate Anions: UV-Vis and $^1HNMR$ Studies, Talanta, 80(2), 532(2009). https://doi.org/10.1016/j.talanta.2009.07.020
  10. S. M. S. Chauhan, T. Bisht, and B. Garg, Anion Sensing by Phenazine-Based Urea/Thiourea Receptors, Tetrahedron Lett., 49(47), 6646(2008). https://doi.org/10.1016/j.tetlet.2008.09.033
  11. S. Devaraj, D. Saravanakumar, and M. Kandaswamy, Dual Responsive Chemosensors for Anion and Cation: Synthesis and Studies of Selective Chemosensor for $F^-$ and Cu(II) Ions, Sens. Act. B: Chem., 136(1-2), 13(2009). https://doi.org/10.1016/j.snb.2008.11.018
  12. D. H. Lee, H. Y. Lee, and J. I. Hong, Anion Sensor Based on The Indoaniline-Thiourea System, Tetrahedron Lett., 43(40), 7273(2002). https://doi.org/10.1016/S0040-4039(02)01455-7
  13. P. MacCarthy, Simplified Experimental Route for Obtaining Job's Curves, Anal. Chem., 50(14), 2165(1978). https://doi.org/10.1021/ac50036a059
  14. F. S. Raad, A. O. E. Ballouli, R. M. Moustafa, M. H. A. Sayah, and B. R. Kaafarani, Novel Quinoxanilinophenanthrophenazine-Based Molecules As Sensor For Anions: Synthesis and Binding Investigations, Tetrahedron, 66(16), 2944(2010). https://doi.org/10.1016/j.tet.2010.02.075
  15. H. S. Lee and J. H. Kim, Measurement of Physical Properties of Conducting Polymers, Polymer Sci. Technol., 18, 488(2007).
  16. Y. S. Kim, J. I. Shin, S. Y. Park, K. Jun, and Y. A. Son, Electrochemical Studies on Heptamethine Cyanine Dyes, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 21(5), 35(2009). https://doi.org/10.5764/TCF.2009.21.5.035
  17. H. Kim, D. H. Lee, and Y. A. Son, Characteristics of HOMO and LUMO Energy Potentials toward Rhodamine 6G-Naphthaldehyde Chemosensor, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 25(1), 1(2013). https://doi.org/10.5764/TCF.2013.25.1.1
  18. H. Kim, D. H. Lee, and Y. A. Son, Electrochemical Study on Rhodamine 6G-Indole Based Dye for HOMO and LUMO Energy Levels, Textile Coloration and Finishing(J. Korean Soc. Dye. and Finish.), 25(1), 7(2013). https://doi.org/10.5764/TCF.2013.25.1.7
  19. B. Delley, An All-Electron Numerical Method for Solving The Local Density Functional for Polyatomic Molecules, J. Chem. Phys., 92(1), 508(1990). https://doi.org/10.1063/1.458452
  20. B. Delley, From Molecules to Solids with the $DMol^3$ Approach, J. Chem. Phys., 113(18), 7756 (2000). https://doi.org/10.1063/1.1316015
  21. A. D. Boese and N. C. Handy, A New Parametrization of Exchange-Correlation Generalized Gradient Approximation Functionals, J. Chem. Phys., 114(13), 5497(2001). https://doi.org/10.1063/1.1347371

Cited by

  1. Particle Size, Morphology and Color Characteristics of C.I. Pigment Red 57:1 : 2. Effect of Salt Milling Process vol.27, pp.4, 2015, https://doi.org/10.5764/TCF.2015.27.4.245
  2. Synthesis and Property of Pyrene-Naphthalene Diimide-Pyrene Triad vol.26, pp.4, 2014, https://doi.org/10.5764/TCF.2014.26.4.305