DOI QR코드

DOI QR Code

CAN MASSIVE GRAVITY EXPLAIN THE MASS DISCREPANCY-ACCELERATION RELATION OF DISK GALAXIES?

  • Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
  • 투고 : 2013.04.15
  • 심사 : 2013.05.27
  • 발행 : 2013.06.30

초록

The empirical mass discrepancy-acceleration (MDA) relation of disk galaxies provides a key test for models of galactic dynamics. In terms of modified laws of gravity and/or inertia, the MDA relation quantifies the transition from Newtonian to modified dynamics at low centripetal accelerations $a_c{\lesssim}10^{-10}ms^{-2}$. As yet, neither dynamical models based on dark matter nor proposed modifications of the laws of gravity/inertia have predicted the functional form of the MDA relation. In this work, I revisit the MDA data and compare them to four different theoretical scaling laws. Three of these scaling laws are entirely empirical; the fourth one - the "simple ${\mu}$" function of Modified Newtonian Dynamics - derives from a toy model of gravity based on massive gravitons (the "graviton picture"). All theoretical MDA relations comprise one free parameter of the dimension of an acceleration, Milgrom's constant aM. I find that the "simple ${\mu}$" function provides a good fit to the data free of notable systematic residuals and provides the best fit among the four scaling laws tested. The best-fit value of Milgrom's constant is $a_M=(1.06{\pm}0.05){\times}10^{-10}ms^{-2}$. Given the successful prediction of the functional form of the MDA relation, plus an overall agreement with the observed kinematics of stellar systems spanning eight orders of magnitude in size and 14 orders of magnitude in mass, I conclude that the "graviton picture" is sufficient (albeit probably not a necessary nor unique approach) to describe galactic dynamics on all scales well beyond the scale of the solar system. This suggests that, at least on galactic scales, gravity behaves as if it was mediated by massive particles.

키워드

참고문헌

  1. Anderson, J. D., et al. 1995, Improved Bounds on Nonluminous Matter in Solar Orbit, ApJ, 448, 885 https://doi.org/10.1086/176017
  2. Bahcall, N. A., Ostriker, J. P., Perlmutter, S., & Steinhardt, P. J. 1999, The Cosmic Triangle: Revealing the State of the Universe, Science, 284, 1481 https://doi.org/10.1126/science.284.5419.1481
  3. Bekenstein, J. D., & Milgrom, M. 1984, Does the Missing Mass Problem Signal the Breakdown of Newtonian Gravity?, ApJ, 286, 7 https://doi.org/10.1086/162570
  4. Bekenstein, J. D. 2004, Relativistic Gravitation Theory for the Modified Newtonian Dynamics Paradigm, Phys. Rev. D, 70, 083509-1 https://doi.org/10.1103/PhysRevD.70.083509
  5. Bekenstein, J. D. 2006, The Modified Newtonian Dynamics - MOND and Its Implications for New Physics, Contemp. Phys., 47, 387 https://doi.org/10.1080/00107510701244055
  6. Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton University Press)
  7. Cardone, V. F., Radicella, N., & Parisi, L. 2012, Constraining Massive Gravity with Recent Cosmological Data, Phys. Rev. D, 85, 124005 https://doi.org/10.1103/PhysRevD.85.124005
  8. Einasto, J., Kaasik, A., & Saar, E. 1974, Dynamic Evidence on Massive Coronas of Galaxies, Nature, 250, 309 https://doi.org/10.1038/250309a0
  9. Faber, S. M., & Jackson, R. E. 1976, Velocity Dispersions and Mass-to-Light Ratios for Elliptical Galaxies, ApJ, 204, 668 https://doi.org/10.1086/154215
  10. Famaey, B., & Binney, J. 2005, Modified Newtonian Dynamics in the Milky Way, MNRAS, 363, 603 https://doi.org/10.1111/j.1365-2966.2005.09474.x
  11. Famaey, B., & McGaugh, S. S. 2012, Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions, Living Rev. Relativ., 15, 10
  12. Ferreira, P. G., & Starkman, G. D. 2009, Einstein's Theory of Gravity and the Problem of Missing Mass, Science, 326, 812 https://doi.org/10.1126/science.1172245
  13. Fierz, M., & Pauli, W. 1939, On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proc. R. Soc. London A, 173, 211 https://doi.org/10.1098/rspa.1939.0140
  14. Frank, M. J., et al. 2012, The Velocity Dispersion and Mass Function of the Outer Halo Globular Cluster Palomar 4, MNRAS, 423, 2917 https://doi.org/10.1111/j.1365-2966.2012.21105.x
  15. Fukugita, M., & Peebles, P. J. E. 2004, The Cosmic Energy Inventory, ApJ, 616, 643 https://doi.org/10.1086/425155
  16. Gallagher, J. S., & Hudson, H. S. 1976, Surface Photometry of the Spiral Galaxy IC2233 and the Existence of Massive Halos, ApJ, 209, 389 https://doi.org/10.1086/154731
  17. Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009, Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center, ApJ, 692, 1075 https://doi.org/10.1088/0004-637X/692/2/1075
  18. Giodini, S., et al. 2009, Stellar and Total Baryon Mass Fractions in Groups and Clusters Since Redshift 1, ApJ, 703, 982 https://doi.org/10.1088/0004-637X/703/1/982
  19. Goldhaber, A. S., & Nieto, M. M. 2010, Photon and Graviton Mass Limits, Rev. Mod. Phys., 82, 939 https://doi.org/10.1103/RevModPhys.82.939
  20. Griffith, D. 2008, Introduction to Elementary Particles (Weinheim: Wiley-VCH)
  21. Hernandez, X., Jimenez, M. A., & Allen, C. 2012, Wide Binaries as a Critical Test of Classical Gravity, Eur. Phys. J. C, 72, 1884 https://doi.org/10.1140/epjc/s10052-012-1884-6
  22. Hernandez, X., Jim´enez, M. A., & Allen, C. 2013, Flattened Velocity Dispersion Profiles in Globular Clusters: Newtonian Tides or Modified Gravity?, MNRAS, 428, 3196 https://doi.org/10.1093/mnras/sts263
  23. Hinterbichler, K. 2012, Theoretical Aspects of Massive Gravity, Rev. Mod. Phys., 84, 671 https://doi.org/10.1103/RevModPhys.84.671
  24. Kroupa, P. 2012, The Dark Matter Crisis: Falsification of the Current Standard Model of Cosmology, PASA, 29, 395 https://doi.org/10.1071/AS12005
  25. Lee, M. G., & Jang, I. S. 2012, The Distance to M101 Hosting Type Ia Supernova 2011fe Based on the Tip of the Red Giant Branch, ApJL, 760, L14 https://doi.org/10.1088/2041-8205/760/1/L14
  26. McGaugh, S. S. 2004, The Mass Discrepancy-Acceleration Relation: Disk Mass and the Dark Matter Distribution, ApJ, 609, 652 https://doi.org/10.1086/421338
  27. Milgrom, M. 1983, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, ApJ, 270, 365 https://doi.org/10.1086/161130
  28. Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxies, ApJ, 270, 371 https://doi.org/10.1086/161131
  29. Milgrom, M. 1983, A Modification of the Newtonian Dynamics: Implications for Galaxy Systems, ApJ, 270, 384 https://doi.org/10.1086/161132
  30. Milgrom, M. 1984, Isothermal Spheres in the Modified Dynamics, ApJ, 287, 571 https://doi.org/10.1086/162716
  31. Milgrom, M. 1994, Modified Dynamics Predictions Agree with Observations of the Hi Kinematics in Faint Dwarf Galaxies Contrary to the Conclusions of Lo, Sargent, and Young, ApJ, 429, 540 https://doi.org/10.1086/174341
  32. Ostriker, J. P., & Peebles, P. J. E. 1973, A Numerical Study of the Stability of Flattened Galaxies: Or, Can Cold Gas Survive?, ApJ, 186, 467 https://doi.org/10.1086/152513
  33. Riess, A. G., et al. 2011, A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3, ApJ, 730, 119 https://doi.org/10.1088/0004-637X/730/2/119
  34. Rubin, U. C., Ford, W. K. Jr., & Thonnard, N. 1980, Rotational Properties of 21 Sc Galaxies with a Large Range of Luminosities and Radii, From NGC4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), ApJ, 238, 471 https://doi.org/10.1086/158003
  35. Sanders, R. H. 1990, Mass Discrepancies in Galaxies: Dark Matter and Alternatives, A&AR, 2, 1 https://doi.org/10.1007/BF00873540
  36. Sanders, R. H. 1994, A Faber-Jackson Relation for Clusters of Galaxies: Implications for Modified Dynamics, A&A, 284, L31
  37. Sanders, R. H. 2010, The Universal Faber-Jackson Relation, MNRAS, 407, 1128 https://doi.org/10.1111/j.1365-2966.2010.16957.x
  38. Sanders, R. H. 2012, NGC2419 Does Not Challenge Modified Newtonian Dynamics, MNRAS, 419, L6 https://doi.org/10.1111/j.1745-3933.2011.01160.x
  39. Sanders, R. H., & McGaugh, S. S. 2002, Modified Newtonian Dynamics as an Alternative to Dark Matter, ARA&A, 40, 263 https://doi.org/10.1146/annurev.astro.40.060401.093923
  40. Scarpa, R., et al. 2011, Testing Newtonian Gravity with Distant Globular Clusters: NGC1851 and NGC1904, A&A, 525, A148 https://doi.org/10.1051/0004-6361/201014462
  41. Schodel, R., Merritt, D., & Eckart, A. 2009, The Nuclear Star Cluster of the Milky Way: Proper Motions and Mass, A&A, 502, 91 https://doi.org/10.1051/0004-6361/200810922
  42. Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, The Baryon Census in Multiphase Intergalactic Medium: 30% of the Baryons May Still Be Missing, ApJ, 759, 23 https://doi.org/10.1088/0004-637X/759/1/23
  43. Tholen, D. J., Tejfel, V. G., & Cox, A. N. 2000, in: Cox, A.N. (ed.), Allen's Astrophysical Quantities, 4th edn., 293 (New York: Springer)
  44. Trippe, S., et al. 2008, Kinematics of the Old Stellar Population at the Galactic Centre, A&A, 492, 419 https://doi.org/10.1051/0004-6361:200810191
  45. Trippe, S. 2013, A Simplified Treatment of Gravitational Interaction on Galactic Scales, JKAS, 46, 41
  46. Trippe, S. 2013, A Derivation of Modified Newtonian Dynamics, JKAS, 46, 93
  47. Tully, R. B., & Fisher, J. R. 1977, A New Method of Determining Distances to Galaxies, A&A, 54, 661
  48. Zwicky, F. 1933, Die Rotverschiebung von extragalaktischen Nebeln, Helv. Phys. Acta, 6, 110

피인용 문헌

  1. Galaxies as simple dynamical systems: observational data disfavor dark matter and stochastic star formation1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0179
  2. The “graviton picture”: a Bohr model for gravitation on galactic scales?1 vol.93, pp.2, 2015, https://doi.org/10.1139/cjp-2014-0158