DOI QR코드

DOI QR Code

A CENTRAL LIMIT THEOREM FOR LINEAR PROCESSES UNDER LINEAR NEGATIVELY QUADRANT DEPENDENCE

  • 투고 : 2013.06.12
  • 심사 : 2013.07.19
  • 발행 : 2013.08.15

초록

In this paper we establish a central limit theorem for weighted sums of $Y_n={\sum_{i=1}^{n}}a_n,_iX_i$, where $\{a_{n,i},\;n{\in}N,\;1{\leq}i{\leq}n\}$ is an array of nonnegative numbers such that ${\sup}_{n{\geq}1}{\sum_{i=1}^{n}}a_{n,i}^2$ < ${\infty}$, ${\max}_{1{\leq}i{\leq}n}a_{n,i}{\rightarrow}0$ and $\{X_i,\;i{\in}N\}$ is a sequence of linear negatively quadrant dependent random variables with $EX_i=0$ and $EX_i^2$ < ${\infty}$. Using this result we will obtain a central limit theorem for partial sums of linear processes.

키워드

참고문헌

  1. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
  2. T. Birkel, A functional central limit theorem for positively dependent random variables, J. Multivariate Anal. 11 (1993), 314-320.
  3. J. T. Cox and G. Grimmett, Central limit theorems for associated random variables and the percolation model, Ann. Probab. 12 (1984), 514-528. https://doi.org/10.1214/aop/1176993303
  4. D. Kafles and R. M. Bhaskara, Weak consistency of least squares estimators in linear models, J. Multivariate Anal. 12 (1982), 186-198. https://doi.org/10.1016/0047-259X(82)90014-8
  5. E. L. Lehmann, Some concepts of dependence, Ann. Math. Stat. 37 (1966), 1137-1153. https://doi.org/10.1214/aoms/1177699260
  6. C. M. Newman, Normal fluctuations and the FKG inequalities, Commun. Math. Phys. 74 (1980), 119-128. https://doi.org/10.1007/BF01197754
  7. C. M. Newman, Asymptotic independence and limit theorems for positively and negatively dependent random variables, in Inequalities in Statistics and Probability (Tong, Y.L., ed., IMS, Hayward, CA), 1984.
  8. M. Peligrad and S. Utev, Central limit theorem for linear processes, Ann. Probab. 25 (1997), 443-456. https://doi.org/10.1214/aop/1024404295
  9. M. B. Priestley and M. T. Chao, Nonparametric function fitting, J. Roy. Statist. Soc. Ser. B 34 (1972), 385-392.
  10. C. R. Rao and M. T. Zhao, Linear representation of M-estimates in linear models, Canad. J. Statist. 20 (1992), 359-368. https://doi.org/10.2307/3315607
  11. G. Roussas, Asymptotic normality of random fields of positively or negatively associated processes, J. Multivariate Anal. 50 (1994), 152-173. https://doi.org/10.1006/jmva.1994.1039
  12. S. Shanskin, A strong invariance principle for postively or negatively associated random fields, Statist. Probab. Lett. 78 (2008), 2121-2129. https://doi.org/10.1016/j.spl.2008.01.078