DOI QR코드

DOI QR Code

인체관절의 회전중심 추정을 위한 구적합법의 비교

The Comparison of Sphere Fitting Methods for Estimating the Center of Rotation on a Human Joint

  • 김진욱 (군산대학교 자연과학대학 체육학과)
  • Kim, Jin-Uk (Department of Physical Education & Sports, College of Natural Science, Kunsan National University)
  • 투고 : 2012.04.28
  • 심사 : 2013.03.06
  • 발행 : 2013.03.31

초록

The methods of fitting a circle to measured data, geometric fit and algebraic fit, have been studied profoundly in various areas of science. However, they have not been applied exactly to a biomechanics discipline for locating the center of rotation of a human joint. The purpose of this study was to generalize the methods to fitting spheres to the points in 3-dimension, and to estimate the center of rotation of a hip joint by three of geometric fit methods(Levenberg-Marquardt, Landau, and Sp$\ddot{a}$th) and four of algebraic fit methods(Delogne-K${\aa}$sa, Pratt, Taubin, and Hyper). 1000 times of simulation experiments for flexion/extension and ad/abduction at an artificial hip joint with four levels of range of motion(10, 15, 30, and $60^{\circ}$) and three levels of angular velocity(30, 60, and $90^{\circ}$/s) were executed to analyze the responses of the estimated center of rotation. The results showed that the Sp$\ddot{a}$th estimate was very sensitive to the marker near the center of rotation. The bias of Delogne-K${\aa}$sa estimate existed in an even larger range of motion. The Levenberg-Marquardt algorithm of geometric fit and the Pratt of algebraic fit showed the best results. The combination of two methods, using the Pratt's estimate as initial values of the Levenberg-Marquardt algorithm, could be a candidate of more valid estimator.

키워드

참고문헌

  1. Ahn, S. J., Rauh, W., & Warnecke, H. J. (2001). Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola, and parabola. Pattern Recognition, 34, 2283-2303. https://doi.org/10.1016/S0031-3203(00)00152-7
  2. Al-Sharadqah, A., & Chernov, N. (2009). Error analysis for circle fitting algorithms. Electronic Journal of Statistics, 3, 886-911. https://doi.org/10.1214/09-EJS419
  3. Begon, M., Monnet, T., & Lacouture, P. (2007). Effects of movement for estimating the hip joint centre. Gait & Posture, 25, 353-359. https://doi.org/10.1016/j.gaitpost.2006.04.010
  4. Camomilla, V., Cereatti, A., Vannozzi, G., & Cappozzo, A. (2006). An optimized protocol for hip joint centre determination using the functional method. Journal of Biomechanics, 39, 1096-1106. https://doi.org/10.1016/j.jbiomech.2005.02.008
  5. Cappozzo, A., Catani, F., Croce, U. D., & Leardini, A. (1995). Position and orientation in space of bones during movement : Anatomical frame definition and determination. Clinical Biomechanics, 10, 171-178. https://doi.org/10.1016/0268-0033(95)91394-T
  6. Cereatti, A., Donati, M., Camomilla, V., Margheritini, F., & Cappozzo, A. (2009). Hip joint centre location : An ex vivo study. Journal of Biomechanics, 42, 818-823. https://doi.org/10.1016/j.jbiomech.2009.01.031
  7. Chan, N. N. (1965). On circular functional relationships. Journal of the Royal Statistical Society. Series B (Methodological), 27, 45-56.
  8. Chan, Y. T., & Thomas, S. M. (1995). Cramer-Rao lower bounds for estimation of a circle arc center and its radius. Graphical Models and Image Processing, 57, 527-532. https://doi.org/10.1006/gmip.1995.1043
  9. Chan, Y. T., Elhalwagy, Y. Z., & Thomas, S. M. (2002). Estimation of circle parameter by centroiding. Journal of Optimization Theory and Applications, 114, 363-371. https://doi.org/10.1023/A:1016087702231
  10. Chan, Y. T., Lee, B. H., & Thomas, S. M. (2005). Approximate maximum likelihood estimation of circle parameters. Journal of Optimization Theory and Applications, 125, 723-734. https://doi.org/10.1007/s10957-005-2098-y
  11. Chang, L. Y., & Pollard, N. S. (2007). Constrained least-squares optimization for robust estimation of center of rotation. Journal of Biomechanics, 40, 1392-1400. https://doi.org/10.1016/j.jbiomech.2006.05.010
  12. Chernov, N., & Lesort, C. (2004). Statistical efficiency of curve fitting algorithms. Computational Statistics & Data Analysis, 47, 713-728. https://doi.org/10.1016/j.csda.2003.11.008
  13. Chernov, N., & Lesort, C. (2005). Least squares fitting of circles. Journal of Mathematical Imaging and Vision, 23, 239-252. https://doi.org/10.1007/s10851-005-0482-8
  14. Coope, I. D. (1993). Circle fitting by linear and nonlinear least squares. Journal of Optimization theory and applications, 76, 381-388. https://doi.org/10.1007/BF00939613
  15. Delogne, P. (1972). Computer optimization of Deschamp' method and error cancellation reflectometry. Proceedings of the IMEKO-Symposium on Microwave Measurement, Bupapest, 117-129.
  16. De Momi, E., Lopomo, N., Cerveri, P., Zaffagnini, S., Safaran, M. R., & Ferrigno, G. (2009). In-vitro experimental assesment of a new robust algorithm for hip joint centre estimation. Journal of Biomechanics, 42, 989-995. https://doi.org/10.1016/j.jbiomech.2009.02.031
  17. Ehrig, R. M., Taylor, W. R., Duda, G. N., & Heller, M. O. (2006). A survey of formal methods for determining the center of rotation of ball joints. Journal of Biomechanics, 39, 2798-2809. https://doi.org/10.1016/j.jbiomech.2005.10.002
  18. Gamage, S. S. H. U., & Lasenby, J. (2002). New least squares solutions for estimating the average center of rotation and the axis of rotation. Journal of Biomechanics, 35, 87-93. https://doi.org/10.1016/S0021-9290(01)00160-9
  19. Gander, W., Golub, G. H., & Strebel, R. (1994). Least-squares fitting of circles and ellipses. BIT, 34, 558-578. https://doi.org/10.1007/BF01934268
  20. Gavin, H. (2011). The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Retrieved from http://www.duke.edu/-hpgavin/ce281/lm.pdf
  21. Halvorsen, K. (2003). Bias compensated least squares estimate of the center of rotation. Journal of Biomechanics, 36, 999-1008. https://doi.org/10.1016/S0021-9290(03)00070-8
  22. Halvorsen, K., Lesser, M., & Lundberg, A. (1999). A new method for estimating the axis of rotation and the center of rotation. Journal of Biomechanics, 32, 1221-1227. https://doi.org/10.1016/S0021-9290(99)00120-7
  23. Kanatani, K. (1998). Cramer-Rao lower bounds for curve fitting. Graphical Models and Image Processing, 60, 93-99. https://doi.org/10.1006/gmip.1998.0466
  24. Kim, J. U. (2011). Comparisons among functional methods of axis of rotation suitable for describing human joint motion. Korean Journal of Sport Biomechanics, 21(4), 449-458. https://doi.org/10.5103/KJSB.2011.21.4.449
  25. Kasa, I. (1976). A circle fitting procedure and its error analysis. IEEE Transactions on Instrumentation and Measurement, 25, 8-14.
  26. Landau, U. M. (1987). Estimation of a circular arc center and its radius. Computer Vision, Graphics, and Image Processing, 38, 317-326. https://doi.org/10.1016/0734-189X(87)90116-2
  27. Lempereur, M., Laboeuf, F., Brochard, S., Rousset, J., Burdin, V., & Remy-Neris, O. (2010). In vivo estimation of the glenohumeral joint centre by functional methods: Accuracy and repeatability assessment. Journal of Biomechanics, 43, 370-374. https://doi.org/10.1016/j.jbiomech.2009.09.029
  28. Li, W., Zhong, J., Gulliver, T. A., Rong, B., Hu, R. Q., & Qian, Y. (2011). Fitting noisy data to a circle : A simple iterative maximum likelihood approach. IEEE International Conference on Communications(ICC), 1-5.
  29. MacWilliams, B. A. (2008). A comparison of four functional methods to determine centers and axes of rotations. Gait & Posture, 28, 673-679. https://doi.org/10.1016/j.gaitpost.2008.05.010
  30. Marin, F., Mannel, H., Claes, L., & Durselen, L. (2003). Accurate determination of a joint rotation center based on the minimal amplitude point method. Computer Aided Surgery, 8, 30-34. https://doi.org/10.3109/10929080309146100
  31. Moura, I. & Kitney, R. (1991). A direct method for least-squares circle fitting. Computer Physics Communications, 64, 57-63. https://doi.org/10.1016/0010-4655(91)90049-Q
  32. Nievergelt, Y. (1994). Computing circles and spheres of arithmetic least squares. Computer Physics Communications, 81, 343-350. https://doi.org/10.1016/0010-4655(94)90082-5
  33. Piazza, S. J., Erdemir, A., Okita, N., & Cavanagh, P. R. (2004). Assessment of the functional method of hip joint center location subject to reduced range of hip motion. Journal of Biomechanics, 37, 349-356. https://doi.org/10.1016/S0021-9290(03)00288-4
  34. Piazza, S. J., Okita, N., & Cavanagh, P. R. (2001). Accuracy of the functional method of hip joint center location : Effects of limited motion and varied implementation. Journal of Biomechanics, 34, 967-973. https://doi.org/10.1016/S0021-9290(01)00052-5
  35. Pratt(1987). Direct least-squares fitting of algebraic surfaces. Computer Graphics, 21, 145-152.
  36. Rangarajan, P., & Kanatani, K. (2009). Improved algebraic methods for circle fitting. Electronic Journal of Statistics, 3, 1075-1082. https://doi.org/10.1214/09-EJS488
  37. Shakarji, C. M. (1998). Least-squares fitting algorithms of the NIST algorithm testing system. Journal of Research of the National Institute of Standards and Technology, 103, 633-641. https://doi.org/10.6028/jres.103.043
  38. Siston, R. A., & Delp, S. L. (2006). Evaluation of a new algorithm to determine the hip joint center. Journal of Biomechanics, 39, 125-130. https://doi.org/10.1016/j.jbiomech.2004.10.032
  39. Spath, H. (1998). Least-square fitting spheres. Journal of Optimization Theory and Applications, 96, 191-199. https://doi.org/10.1023/A:1022675403441
  40. Taubin, G. (1991). Estimation of planar curves, surfaces, and nonplanar space curves defined by implicit equations with applications to edge and range image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 1115-1138. https://doi.org/10.1109/34.103273
  41. Umbach, D., & Jones, K. N. (2003). A few methods for fitting circles to data. IEEE Transactions on Instrumentation and Measurement, 52, 1881-1885. https://doi.org/10.1109/TIM.2003.820472
  42. Woltring, H. J. (1990). Data processing and error analysis. In N. Berme, & A. Cappozzo (Eds.), Biomechanics of human movement : Applications in rehabilitation, Sport and Ergonomics (pp. 203-237). Washington, OH : Bertec Corporation.
  43. Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D'Lima, D., Cristofolini, L., Witte, H., Schmid, O., & Stokes, I. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion-part : ankle, hip, and spine. Journal of Biomechanics, 35, 543-548. https://doi.org/10.1016/S0021-9290(01)00222-6
  44. Wu, G., van der Helm, F. C. T., Veeger, H. E. J., Makhsous, M., Roy, P. V., Anglin, C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X., Werner, F. W., & Buchholz, B. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion - part : shoulder, elbow, wrist and hand. Journal of Biomechanics, 38, 981-992. https://doi.org/10.1016/j.jbiomech.2004.05.042
  45. Zelniker, E. E., & Clarkson, I. V. L. (2006). A statistical analysis of the Delogne-Kasa method for fitting circles. Digital Signal Processing, 16, 498-522. https://doi.org/10.1016/j.dsp.2005.04.001