DOI QR코드

DOI QR Code

Vehicle Detection Using Optimal Features for Adaboost

Adaboost 최적 특징점을 이용한 차량 검출

  • Received : 2013.06.21
  • Accepted : 2013.08.23
  • Published : 2013.08.30

Abstract

A new vehicle detection algorithm based on the multiple optimal Adaboost classifiers with optimal feature selection is proposed. It consists of two major modules: 1) Theoretical DDISF(Distance Dependent Image Scaling Factor) based image scaling by site modeling of the installed cameras. and 2) optimal features selection by Haar-like feature analysis depending on the distance of the vehicles. The experimental results of the proposed algorithm shows improved recognition rate compare to the previous methods for vehicles and non-vehicles. The proposed algorithm shows about 96.43% detection rate and about 3.77% false alarm rate. These are 3.69% and 1.28% improvement compared to the standard Adaboost algorithmt.

본 논문에서는 최적 특징점 선택기법를 적용한 다중 최적 Adaboost 분류기를 기반으로 새로운 차량 검출 알고리즘을 제안한다. 제안하는 알고리즘은 2 가지 주요 모듈로 구성된다. 첫 번째는 설치된 카메라의 사이트 모델링을 이용한 영상 스케일링을 기반으로 하는 이론적 DDISF(Distance Dependent Image Scaling Factor) 모듈이며, 두 번째는 차량과 카메라의 거리에 대응하는 최적 Haar-like 특징을 활용하는 것이다. 실험 결과 제안하는 알고리즘은 기존의 방법에 비하여 인식 성능이 개선됨을 확인하였다. 제안하는 알고리즘은 96.43% 의 인식률과 약 3.77%의 오검출이 발생하였다. 이러한 성능은 기존의 표준 Adabooost 알고리즘에 비하여 각각 3.69%와 1.28% 의 성능을 개선한 것이다.

Keywords

References

  1. Young-Wook Kwon, Se-Hoon Jung, Dong- Gook Park, Chun-Bo Sim, "A Key-frame Method based on HSV Color Model for Smart Vehicle Management System", The Journal of Korea Institute of Electronic Communication Sciences, Vol. 8, No. 4, pp. 595-604, 2013. https://doi.org/10.13067/JKIECS.2013.8.4.595
  2. Kyung-Guk Lim, Sung-Bae Yoon, "Enforcement of Efficency of Tunnel Disaster Prevention", Proc. of Korean Society Civil Engineering, Vol. 57, No. 6, pp. 75-83, 2009.
  3. Z. Sun, "On-Road Vehicle Detection: A Review", IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 28, No. 5, pp. 694-711, 2006. https://doi.org/10.1109/TPAMI.2006.104
  4. Sun.Z., Bebis. G., Miller, R., "On-road vehicle detection using optical sensors : a review," IEEE Conference on Intelligence Transportation Systems, pp. 585-590, 2004.
  5. Zehang Sun, George Bebis, and Ronald Miller, "Monocular Precrash Vehicle Detection: Features and Classifiers", IEEE Transactions on Image Processing, No. 7, pp. 2019-2034, July, 2006.
  6. H. Mori and N. Charkai, "Shadow and Rhythm as Sign Patterns of Obstacle Detection," Proc. Int'l Symp. Industrial Electronics, pp. 271-277, 1993.
  7. T. Zielke, M. Brauckmann, and W. von Seelen, "Intensity and Edge-Based Symmetry Detection with an Application to Car- Following", CVGIP : Image Understanding, Vol. 58, pp. 177-190, 1993. https://doi.org/10.1006/ciun.1993.1037
  8. S. Smith and J. Brady, ASSET-2: Real-Time Motion Segmentation and Shape Tracking, Vol. 17, pp. 814-820, 1995.
  9. R. Cucchiara, C. Grana, M. Piccardi, and A. Prati, "Detecting moving objects, ghosts and shadows in video streams", IEEE Trans. on Patt. Anal. and Machine Intell., Vol. 25, No. 10, pp. 1337-1342, 2003. https://doi.org/10.1109/TPAMI.2003.1233909
  10. Hyun-Tae Kim, Geun-Hoo Lee, Jang-Sik Park and Yun-Sik Yu, "Vehicle Detection in Tunnel using Gaussian Mixture Model and Mathematical Morphological Processing", The Journal of Korea Institute of Electronic Communication Sciences, Vol. 7, No. 5, pp. 967-974, 2012.
  11. Gyu-Yeong Kim, Jae-Ho Kim, Jang-Sik Park, Hyun-Tae Kim, Yun-Sik Yu, "Vehicle Tracking using Euclidean Distance", The Journal of Korea Institute of Electronic Communication Sciences, Vol. 7, No. 6, pp. 1293-1299, 2012.
  12. J. Wu and X. Zhang, "A PCA Classifier and Its Application in Vehicle Detection," Proc. IEEE Int'l Joint Conf. Neural Networks, Vol. 1, pp. 600-604, 2001.
  13. K. Etemad, R. Chellappa, "Discriminant analysis for recognition of human face images", J. Opt. Soc. Am., 14, pp. 1724-1733, 1997. https://doi.org/10.1364/JOSAA.14.001724
  14. Chengjun Liu, Wechsler, H., "Independent component analysis of gabor features for face recognition", Neural Networks, IEEE Transactions on, Vol. 14, Issue. 4, pp. 919-928, 2003. https://doi.org/10.1109/TNN.2003.813829
  15. C. Goerick, N. Detlev, and M. Werner, "Artificial Neural Networks in Real-Time Car Detection and Tracking Applications", Pattern Recognition Letters, Vol. 17, pp. 335-343, 1996. https://doi.org/10.1016/0167-8655(95)00129-8
  16. Z. Sun, G. Bebis, and R. Miller, "On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization", IEEE Trans. Intelligent Transportation Systems, Vol. 6, No. 2, pp. 125-137, 2005. https://doi.org/10.1109/TITS.2005.848363
  17. Y. Freund and R. E. Schapire. "Experiments With a New Boosting Algorithm. In Machine Learning", In Proceedings of the Thirteen International Conference In Machine Learning, Bari, pp. 148-156, 1996.
  18. M. T. Pham and T. J. Cham, "Fast Training And Selection of Haar Features Using Statistics in Boosting-Based Face Detection", In Proc. International Conference on Computer Vision (ICCV 2007), Rio de Janeiro, Brazil, pp. 1-7, 2007.
  19. Yi-Min Tsai, Keng-Yen Huang, Chih-Chung Tsai and Liang-Gee Chen, "Learning-based Vehicle Detection Using Up-scaling Schemes and Predictive Frame Pipelines Structures", International Conference on Pattern Recognition, pp. 3101-3104, 2010.