DOI QR코드

DOI QR Code

A CHANGE OF SCALE FORMULA FOR GENERALIZED WIENER INTEGRALS II

  • Kim, Byoung Soo (School of Liberal Arts Seoul National University of Science and Technology) ;
  • Song, Teuk Seob (Department of Computer Engineering Mokwon University) ;
  • Yoo, Il (Department of Mathematics Yonsei University)
  • Received : 2012.10.02
  • Accepted : 2013.01.11
  • Published : 2013.02.15

Abstract

Cameron and Storvick discovered change of scale formulas for Wiener integrals on classical Wiener space. Yoo and Skoug extended this result to an abstract Wiener space. In this paper, we investigate a change of scale formula for generalized Wiener integrals of various functions using the generalized Fourier-Feynman transform.

Keywords

References

  1. R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137. https://doi.org/10.1090/S0002-9904-1947-08762-0
  2. R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic functions, Kozubnik, Lecture Notes in Math. 798 (1980), 18-27. https://doi.org/10.1007/BFb0097256
  3. R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero, 17(1987), 105-115.
  4. R. H. Cameron and D. A. Storvick, Relationships between the Wiener integral and the analytic Feynman integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero, 17 (1987), 117-133.
  5. R. H. Cameron and D. A. Storvick, New existence theorems and evaluation formulas for analytic Feynman integrals, Deformations of Mathematics Structures, 297-308, Kluwer, Dor- drecht, 1989.
  6. D. M. Chung, C. Park, and D. Skoug, Generalized Feynman integrals via conditional Feynman integrals, Michigan Math. J. 40 (1993), 377-391. https://doi.org/10.1307/mmj/1029004758
  7. G. W. Johnson and D. L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math., 83 (1979), 157-176. https://doi.org/10.2140/pjm.1979.83.157
  8. G. W. Johnson and D. L. Skoug, Stability theorems for the Feynman integral, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Serie II-Numero 8 (1985), 361-367.
  9. T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673. https://doi.org/10.1090/S0002-9947-1995-1242088-7
  10. T. Huffman, C. Park, and D. Skoug, Generalized transforms and convolutions, Internat. J. Math, & Math. Sci. 20 (1997), 19-32. https://doi.org/10.1155/S0161171297000045
  11. B. S. Kim, T. S. Song, and I. Yoo, A change of scale formula for generalized Wiener integrals, J. Chungcheong Math. Soc. 24 (2011), 517-528.
  12. I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, and T. S. Song , A change of scale formula for conditional Wiener integrals on classical Wiener space, J. Korean Math. Soc. 44 (2007), 1025-1050. https://doi.org/10.4134/JKMS.2007.44.4.1025
  13. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, International J. Math. and Math. Sci., 17 (1994), 239-248. https://doi.org/10.1155/S0161171294000359
  14. I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), 115-129.
  15. I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), 371-389. https://doi.org/10.1216/rmjm/1181069911