DOI QR코드

DOI QR Code

Synthesis and optical properties of ZnO thin films prepared by SILAR method with ethylene glycol

  • Lee, Pay-Yu (Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University) ;
  • Chang, Sheng-Po (Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University) ;
  • Chang, Shoou-Jinn (Institute of Microelectronics and Department of Electrical Engineering, National Cheng Kung University)
  • Received : 2013.03.03
  • Accepted : 2013.07.15
  • Published : 2013.06.25

Abstract

An ultrasonic-mediated assisted stepwise method has been developed for depositing transparent ZnO films from aqueous solution. Rinsing in low ethylene glycol temperature was easy to produce intermediate phase of $Zn(OH)_2$, rinsing in $120^{\circ}C$ ethylene glycol was observed the diffraction peak of intermediate $Zn(OH)_2$ in early report, the rinsing temperature plays an important role in the process of $Zn(OH)_2$ phase transformed to ZnO, high rinsing temperature actually improved the intermediate phase. However, the effect of rinsing on the intermediate phase is yet to be understood clearly. The effect of different rinsing procedures, involving either of or a combination of successive ionic layer adsorption and reaction (SILAR) and ultrasonic-assisted rinsing, prior to hydrolysis in ethylene glycol was found to improve the occurrence $Zn(OH)_2$ in ZnO thin films. In the zinc complex ($[Zn(NH_3)_4]^{2+}$) solution, excess ($[Zn(NH_3)_4]^{2+}$) absorbed in glass substrate transformed incompletely to ZnO and exist as $Zn(OH)_2$ phase in thin films. In films deposited at low temperature, rinsing procedure is applied to improve excess $Zn(OH)_2$ and obtain smoother transparent thin films.

Keywords

References

  1. Drici, A., Djeteli, G., Tchangbedji, G., Derouiche, H., Jondo, K., Napo, K., Bernede, J.C., Ouro-Djobo, S. and Gbagba, M. (2004), "Structured ZnO thin films grown by chemical bath deposition for photovoltaic applications", Phys. Status Solidi A-Appl. Mater., 201(7), 1528-1536. https://doi.org/10.1002/pssa.200306806
  2. Gao, X.D., Li, X.M. and Yu, W.D. (2004), "Synthesis and optical properties of ZnO nanocluster porous films deposited by modified SILAR method", Appl. Surf. Sci., 229(1-4) 275-281. https://doi.org/10.1016/j.apsusc.2004.02.004
  3. Gao, X.D., Li, X.M. and Yu, W.D. (2004), "Preparation, structure and ultraviolet photoluminescence of ZnO films by a novel chemical method", J. Solid State Chem., 177(10), 3830-3834. https://doi.org/10.1016/j.jssc.2004.07.030
  4. Gao, X.D., Li, X.M., Yu, W.D., Li, L., Qiu, J.J. and Peng, F. (2007), "Low-temperature deposition of transparent ZnO films by the ultrasonic-mediated stepwise method", Sol. Energy Mater. Sol. Cells, 91(6), 467-473. https://doi.org/10.1016/j.solmat.2006.10.023
  5. Habibia, M.H. and Sardashtia, M.K. (2008), "Structure and morphology of nanostructured Zinc Oxide thin films prepared by dipvs. spin-coating methods", J. Iran. Chem. Soc., 5(4), 603-609. https://doi.org/10.1007/BF03246140
  6. Jimenez-Gonzailez, A.E. and Nair, P.K. (1995), "Photosensitive ZnO thin films prepared by the chemical deposition method SILAR", Semicond. Sci. Technol., 10(9), 1277-1281. https://doi.org/10.1088/0268-1242/10/9/013
  7. Jing, L., Xu, Z., Shang, J., Sun, X., Cai, W. and Guo, H. (2002), "The preparation and characterization of ZnO ultrafine particles", Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332(1-2), 356-361. https://doi.org/10.1016/S0921-5093(01)01801-9
  8. Jain, A., Sagar, P. and Mehra, R.M. (2007), "Changes of structural, optical and electrical properties of sol-gel derived ZnO films with their thichness", Mater. Sci. Poland, 25, 233-242.
  9. Kumar, P.S., Sundaramurthy, J., Mangalaraj, D., Nataraj, D., Rajarathnam, D. and Srinivasan, M.P. (2011), "Enhanced super-hydrophobic and switching behavior of ZnO nanostructured surfaces prepared by simple solution-immersion successive ionic layer adsorption and reaction process", J. Colloid Interface Sci., 363(1), 51-58.
  10. Kim, H.W. and Kim, N.H. (2004), "Annealing effect for structural morphology of ZnO film on $SiO_2$ substrates", Mater. Sci. Semicond. Process, 7(1-2), 1-6. https://doi.org/10.1016/j.mssp.2003.12.001
  11. Khallaf, H., Chai, G., Lupan, O., Heinrich, H., Park, S., Schulte, A. and Chow, L. (2009), "Investigation of chemical bath deposition of ZnO thin films using six different complexing agents", J. Phys. D: Appl. Phys., 42, 135304. https://doi.org/10.1088/0022-3727/42/13/135304
  12. Lupan, O., Chow, L., Shishiyanu, S., Monaico, E., Shishiyanu, T., Ontea, V.S., Cuenya, B.R., Naitabdi, A.S., Park, S. and Schulte, A. (2009), "Nanostructured zinc oxide films synthesized by successive chemical solution deposition for gas sensor applications", Mater. Res. Bull., 44, 63-69. https://doi.org/10.1016/j.materresbull.2008.04.006
  13. Lupan, O., Shishiyanu, S., Chow, L. and Shishiyanu, T. (2008), "Nanostructured zinc oxide gas sensors by successive ionic layer adsorption and reaction method and rapid photothermal processing", Thin Solid Films, 516(10), 3338-3345. https://doi.org/10.1016/j.tsf.2007.10.104
  14. Li, H., Wang, J., Liu, H., Zhang, H. and Li, X. (2005), "Zinc Oxide films prepared by sol-gel method", J. Cryst. Growth, 275(1-2), e943-e946. https://doi.org/10.1016/j.jcrysgro.2004.11.098
  15. Miyazaki, H., Mikami, R., Yamada, A. and Konagai, M. (2006), "Chemical-bath-deposited ZnO and $Mg(OH)_2$ buffer layer for $Cu(InGa)Se_2$ solar cells", Jpn. J. Appl. Phys., 45, 2618-2620. https://doi.org/10.1143/JJAP.45.2618
  16. Noei, H., Qiu, H., Wang, Y., Loffler, E., Woll, C. and Muhler, M. (2008), "The identification of hydroxyl groups on ZnO nanoparticles by infrared spectroscopy", Phys. Chem. Chem. Phys., 10(47), 7092-7099. https://doi.org/10.1039/b811029h
  17. Sun, S., Tompa, G.S., Rice, C., Sun, X.W., Lee, Z.S., Lien, S.C., Huang, C.W., Cheng, L.C. and Feng, Z.C. (2008), "Metal organic chemical vapor deposition and investigation of ZnO thin films grown on sapphire", Thin Solid Films, 516(16), 5571-5576. https://doi.org/10.1016/j.tsf.2007.07.030
  18. Shishiyanu, S.T. and Lupan, O.I, (2005), "Sensing characteristics of tin-doped ZnO thin films as $NO_2$ gas sensor", Sens. Actuators B, 107, 379-386. https://doi.org/10.1016/j.snb.2004.10.030
  19. Shei, S.C., Chang, S.J. and Lee, P.Y. (2011), "Rinsing effects on successive ionic layer adsorption and reaction method for deposition of ZnO thin films", J. Electrochem. Soc., 158 (3), H208-H213. https://doi.org/10.1149/1.3528306
  20. Takamori, N., Tsujino, K. and Matsumura, M. (2007), "Optical properties and crystallinity of ZnO films for application in super-resolution optical discs", Jpn. J. Appl. Phys., 46, 2944-2946. https://doi.org/10.1143/JJAP.46.2944
  21. Vargas-Hernandez, C., Jimenez-Garcia, F.N., Jurado, J.F. and Henao Granada, V. (2008), "Comparison of ZnO thin films deposited by three different SILAR processes", Microelectron. J., 39(11), 1349-1350. https://doi.org/10.1016/j.mejo.2008.01.056
  22. Wang, J., Du, G., Zhang, Y., Zhao, B., Yang, X. and Liu, D. (2004), "RETRACTED: Luminescence properties of ZnO films annealed in growth ambient and oxygen", J. Cryst. Growth, 263(1-4), 269-272. https://doi.org/10.1016/j.jcrysgro.2003.11.059
  23. Yamada, A., Miyazaki, H., Chiba, Y.I. and Konagai, M. (2005), "High-efficiency Cu(InGa)Se2 solar cells with a zinc-based buffer layer", Thin Solid Films, 480-481, 503-508. https://doi.org/10.1016/j.tsf.2004.11.051
  24. Zhao, S., Zhou, Y., Zhao, K., Liu, Z., Han, P., Wang, S., Xiang, W., Chen, Z., Lu, H., Cheng, B. and Yang, G. (2006), "Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition", Physica B, 373(1), 154-156. https://doi.org/10.1016/j.physb.2005.11.116
  25. Zhou, H., Alves, H., Hofmann, D.M., Kriegseis, W., Meyer, B.K., Kaczmarczyk, G. and Hoffmann, A. (2002), "Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure" , Appl. Phys. Lett., 80, 210. https://doi.org/10.1063/1.1432763

Cited by

  1. Codoped ZnO films by a co-spray deposition technique for photovoltaic applications vol.2, pp.2, 2014, https://doi.org/10.12989/eri.2014.2.2.097
  2. Structural and optical properties of Cu-doped ZnO nanorods by silar method vol.32, pp.12, 2017, https://doi.org/10.1080/10667857.2017.1351656