DOI QR코드

DOI QR Code

Antioxidant Properties of Various Microorganisms Isolated from Arctic Lichen Stereocaulon spp.

북극 지의류 Stereocaulon spp로부터 분리한 여러 미생물의 항산화 성질

  • Kim, Mi-Kyeong (Department of Pharmaceutical Engineering, SunMoon University) ;
  • Park, Hyun (Korea Polar Research Institute (KOPRI)) ;
  • Oh, Tae-Jin (Department of Pharmaceutical Engineering, SunMoon University)
  • Received : 2013.03.13
  • Accepted : 2013.08.14
  • Published : 2013.09.28

Abstract

Lichens are symbiotic organisms composed of fungi, algae, or cyanobacteria which are able to survive in extreme environmental conditions ranging from deserts to polar areas. Some lichen symbionts produce a wide range of secondary metabolites that have many biological activities such as antibacterial, antifungal, antiviral, antitumor, antioxidant and anti-inflammatory etc. Among the symbionts of lichens, of the bacterial communities of lichen symbionts little is known. In this study, we isolated 4 microbial species from the Arctic lichen Stereocaulon spp. and evaluated their antioxidant properties using 1,1-diphenyl-2-picryl-hydrazyl assay as well as 2,2'-azino-bis(3-ethyl benzothiazoline-6-sulphonic acid) assay. Total phenolic contents and total flavonoid contents were also measured. A potent radical scavenging activity was detected in a number of the lichen extracts. Among the 4 species tested in this study, the ethyl acetate extract of Bosea vestrisii 36546(T) exhibited the strongest free radical scavenging activity, with an inhibition rate of 86.8% in DPPH and 75.2% in ABTS assays. Overall, these results suggest that lichen-bacteria could be a potential source of natural antioxidants.

지의류는 사막에서 북극지방까지 이르는 극한 환경에서도 생존 가능한 곰팡이, 조류 또는 시아노박테리아 등으로 구성된 공생체이다. 몇몇 지의류 공생체들은 항균, 항곰팡이, 항바이러스, 항암, 항산화 및 항염증 등과 같은 많은 생물학적 활성을 지닌 넓은 범위의 이차대사물질을 생산한다. 지의류와 공생 관계인 박테리아에 관하여는 아주 일부 알려져 있다. 최근 본 연구팀은 북극 지의류 Stereocaulon spp로부터 4종류의 미생물을 분리하였으며, DPPH와 ABTS 측정법을 이용하여 그들의 항산화능을 조사하였다. 또한 총 폴리페놀 함량과 총 플라보노이드 함량 분석 등도 측정되었다. 강력한 라디컬 소거능은 지의류 추출물을 이용하여 수행하였다. 본 연구에서 조사된 4종류 중, Bosea vestrisii 36546(T)의 에틸아세테이트 추출액은 DPPH 분석에서 86.8% 그리고 ABTS 분석에서 75.2%에 달하는 억제력과 함께 가장 강력한 자유 라디컬 소거능을 보여주었다. 따라서 이러한 결과들로부터 지의류 유래 박테리아 종들이 천연 항산화제로서 잠재적인 소재가 될 수 있다는 것을 제안한다.

Keywords

References

  1. Alegre I, Vinas I, Usall J, Anguera M, Altisent R, Abadias M. 2013. Antagonistic effect of Pseudomonas graminis CPA-7 against foodborne pathogens in fresh-cut apples under simulated commercial conditions. Food Microbiol. 33: 139-148. https://doi.org/10.1016/j.fm.2012.09.007
  2. Alegre I, Vinas I, Usall J, Teixido N, Figge MJ, Abadias M. 2013. Control of foodborne pathogens on fresh-cut fruit by a novel strain of Pseudomonas graminis. Food Microbiol. 34: 390-399. https://doi.org/10.1016/j.fm.2013.01.013
  3. Arnao MB, Cano A, Acosta M. 2010. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73: 239-244.
  4. Baik KS, Park SC, Kim EM, Lim CH, Seong CN. 2010. Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int. J. Syst. Evol. Microbiol. 60: 134-139. https://doi.org/10.1099/ijs.0.011130-0
  5. Bates ST, Cropsey GWG, Caporaso G, Knight R, Fierer N. 2011. Bacterial communities associated with the lichen symbiosis. Appl. Environ. Microbiol. 77: 1309-1314. https://doi.org/10.1128/AEM.02257-10
  6. Benzie IFF, Strain JJ. 1996. The ferric reducing antioxidant ability of plasma (FRAP) as a measure of "antioxidant power" : the FRAP assay. Anal. Biochem. 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  7. Benzie IFF, Strain JJ. 1999. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method. Enzymol. 299: 15-27. https://doi.org/10.1016/S0076-6879(99)99005-5
  8. Bhattarai HD, Kim T, Oh H, Yim JH. 2008. Stereocalpin A, a bioactive cyclic depsipeptide from the Antarctic lichen Stereocaulon alpinum. Tetrahedron Lett. 49: 29-31. https://doi.org/10.1016/j.tetlet.2007.11.022
  9. Bhattarai HD, Kim T, Oh H, Yim JH. 2013. A new pseudodepsidone from the Antarctic lichen Stereocaulon alpinum and its antioxidant, antibacterial activity. J. Antibiot. (Tokyo). [Epub ahead of print]
  10. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1199-1200.
  11. Brodo IM, Sharnoff SD, Sharnoff S. 2001. Stereocaulon (pp. 663-670) In, Lichens of North America. Yale University Press, New Haven.
  12. Cardinale M, Puglia AM, Grube M. 2006. Molecular analysis of lichen-associated bacterial communities. FEMS Microbiol. Ecol. 57: 484-495. https://doi.org/10.1111/j.1574-6941.2006.00133.x
  13. Cardinale M, Jr Castro JVD, Müller H, Berg G, Grube M. 2008. In situanalysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. FEMS Microbiol. Ecol. 66: 63-71. https://doi.org/10.1111/j.1574-6941.2008.00546.x
  14. Coleman JJ, Ghosh S, Okoli I, Mylonakis E. 2011. Antifungal activity of microbial secondary metabolites. PLoS One. 6: e25321. https://doi.org/10.1371/journal.pone.0025321
  15. Devasagayam TPA, Tilak JC, Boloor KK, Sane KS, Ghaskadbi SS, Lele RD. 2004. Free radicals and antioxidants in human health: current status and future prospects. J. Assoc. Physic. India. 52: 794-804.
  16. Gardner PT, White TAC, McPhail DB, Duthie GG. 2000. The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68: 471-474. https://doi.org/10.1016/S0308-8146(99)00225-3
  17. Gonzalez I, Ayuso-Sacido A, Anderson A, Genilloud O. 2005. Actinomycetes isolated from lichens: Evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiol. Ecol. 54: 401-415. https://doi.org/10.1016/j.femsec.2005.05.004
  18. Grice HC. 1986. Safety evaluation of butylatedhydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol. 24: 1127-1130.
  19. Halliwell B. 1997. Antioxidant and human disease: a general introduction. Nutr. Rev. 55: 44-49.
  20. Halvorsen BL, Holte K, Myhrstad MCW, Barikmo I, Hvattum E, Remberg SF, et al. 2002. A systematic screening of total antioxidants in dietary plants. J. Nutr. 132: 461-471.
  21. Hawksworth DL, Kirk PM, Sutton BC, Pegler DN. 1995. Ainsworth & Bisby's dictionary of the fungi. 8th edition. CAB international, Wallingford.
  22. Ingolfsdottir K, Chung GAC, Skulason VG, Gissurarson SR, Vilhelmsdottir M. 1998. Antimycobacterial activity of lichens metabolites in vitro. Eur. J. Pharm. Sci. 6: 141-144. https://doi.org/10.1016/S0928-0987(97)00078-X
  23. Kosani MM, Rankovi BR, Stanojkovi TP. 2012. Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J. Sci. Food Agric. 9: 1909-1916.
  24. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, et al. 2002. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 70: 388-391.
  25. La Scola B, Mallet MN, Grimont PA, Raoult D. 2003. Bosea eneae sp. nov, Bosea massiliensis sp. nov. and Bosea vestrisii sp. nov, isolated from hospital water supplies, and emendation of the genus Bosea (Das et al. 1996) Int. J. Syst. Evol. Microbiol. 53: 15-20. https://doi.org/10.1099/ijs.0.02127-0
  26. Lauterwein M, Oethinger M, Belsner K, Peters T, Marre R. 1995. In vitro activities of the lichen secondary metabolites vulpinic acid,(+)-usnic acid against aerobic and anaerobic microorganisms. Antimicrob. Agents Chemother. 39: 2541- 2543. https://doi.org/10.1128/AAC.39.11.2541
  27. Lawrey JD. 1989. Lichen secondary compounds: evidence for a correspondence between antiherbivore and antimicrobial function. J. Bryol. 92: 326-328. https://doi.org/10.2307/3243401
  28. Lin MY, Chang FY. 2000. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digest. Dis. Sci. 45: 1617-1622. https://doi.org/10.1023/A:1005577330695
  29. Luo H, Yamamoto Y, Jeon HS, Liu YP, Jung JS, Koh YJ, et al. 2011. Production of anti-Helicobacter pylori metabolite by the lichen-forming fungus Nephromopsis pallescens. J. Microbiol. 49: 66-70. https://doi.org/10.1007/s12275-011-0289-9
  30. Luo H, Yamamoto Y, Liu Y, Jung JS, Kahng HY, Koh YJ, et al. 2010. The in vitro antioxidant properties of Chinese highland lichens. J. Microbiol. Biotechnol. 20: 1524-1528. https://doi.org/10.4014/jmb.1003.03029
  31. Manojlovi N, Rankovi B, Kosani M, Vasiljevi P, Stanojkovi T. 2012. Chemical composition of three Parmelia lichens and antioxidant, antimicrobial and cytotoxic activities of some their major metabolites. Phytomedicine. 19: 1166-1172. https://doi.org/10.1016/j.phymed.2012.07.012
  32. Molnár K, Farkas E. 2010. Current results on biological activities of lichen secondary metabolites: a review. Z Naturforsch. C. 65: 157-173.
  33. Morita H, Tsuchiya T, Kishibe K, Noya S, Shiro M, Hirasawa Y. 2009. Antimitotic activity of lobaric acid and a new benzofuran, sakisacaulon A from Stereocaulonsasakii. Bioorg. Med. Chem. 19: 3679-3681. https://doi.org/10.1016/j.bmcl.2009.03.170
  34. Muller K. 2001. Pharmaceutically relevant metabolites from lichens. Appl. Microbiol. Biotechnol. 56: 9-16. https://doi.org/10.1007/s002530100684
  35. Nash III TH. 1996. Introduction. In: Nash TH III (ed) Lichen biology. Cambridge University Press, Cambridge, pp 1-7.
  36. Oksanen I. 2006. Ecological and biotechnological aspects of lichens. J. Microbial. Biotechnol. 73: 723-734. https://doi.org/10.1007/s00253-006-0611-3
  37. Paudel B, Bhattarai HD, Prasad Pandey D, Hur JS, Hong SG, Kim IC, et al. 2012. Antioxidant, antibacterial activity and brine shrimp toxicity test of some mountainous lichens from Nepal. Biol. Res. 45: 387-391. https://doi.org/10.4067/S0716-97602012000400010
  38. Paudel B, Bhattarai HD, Lee JS, Hong SG, Shin HW, Yim JH. 2008. Antibacterial potential of Antarctic lichens against human pathogenic Gram-positive bacteria. Phytother. Res. 22: 1269-1271. https://doi.org/10.1002/ptr.2445
  39. Pietta PG. 2000. Flavonoids as Antioxidants. J. Nat. Prod. 63: 1035-1042. https://doi.org/10.1021/np9904509
  40. Prior RL, Wu X, Schaich K. 2005. Standardized methods for the determination of antioxidant capacity and phenolics in food and dietary supplements. J. Agric. Food Chem. 53: 4290-4302. https://doi.org/10.1021/jf0502698
  41. Rankovi B, Rankovi D, Mari D. 2010. Antioxidant and antimicrobial activity of some lichen species. Mikrobiologiia 79: 812-818.
  42. Rice-Evans CA, Miller NJ, Paganga G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2: 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  43. Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. 1995. The relative activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 22: 375-383. https://doi.org/10.3109/10715769509145649
  44. Rice-Evans CA, Nicholas J, Miller J, Paganga G. 1996. Structure- antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20: 933-956. https://doi.org/10.1016/0891-5849(95)02227-9
  45. Seo C, Sohn JH, Park SM, Yim JH, Lee HK, Oh H. 2008. Usimines A-C, bioactive usnic acid derivatives from the Antarctic lichen Stereocaulon alpinum. J. Nat. Prod. 71: 710-712. https://doi.org/10.1021/np070464b
  46. Silva NMV, Pereira TM, Filho SA, Matsuura T. 2011. Taxonomic characterization and antimicrobial activity of actinomycetes associated with foliose lichens from the Amazonian ecosystem. Aust. J. Basic. Appl. Sci. 5: 910-918.
  47. Slinkard K, Singleton VL. 1977. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 28: 49-55.
  48. Stocker-Wörgötter E. 2008. Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Nat. Prod. Rep. 25: 188-200. https://doi.org/10.1039/b606983p
  49. Thadhani VM, Choudhary MI, Ali S, Omar I, Siddique H, Karunaratne V. 2011. Antioxidant activity of some lichen metabolites. Nat. Prod. Res. 25: 1827-1837. https://doi.org/10.1080/14786419.2010.529546
  50. Wichi HP. 1988. Enhanced tumor development by butylatedhydroxyanisole (BHA) from the prospective of effect on forestomach and oesophageal squamous epithelium. Food Chem. Toxicol. 26: 717-723. https://doi.org/10.1016/0278-6915(88)90072-5
  51. Yamamoto Y. 2002. Discharge and germination of lichen ascospores in the laboratory. Lichenol. 1: 11-22.
  52. Zhang S, Liu L, Su Y, Li H, Sun Q, Liang X, et al. 2011. Antioxidative activity of lactic acid bacteria in yogurt. Afr. J. Microbial. Res. 5: 5149-5201.
  53. Zhishen JT, Mengcheng WJ. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on super oxide radicals. Food Chem. 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2

Cited by

  1. Antibacterial and antioxidant potential of polar microorganisms isolated from Antarctic lichen Psoroma sp. vol.8, pp.39, 2013, https://doi.org/10.5897/ajmr2014.6970
  2. Recent literature on lichens-233 vol.117, pp.2, 2013, https://doi.org/10.1639/0007-2745-117.2.209
  3. Development of a nitrogen-fixing cyanobacterial consortium for surface stabilization of agricultural soils vol.31, pp.2, 2013, https://doi.org/10.1007/s10811-018-1597-9
  4. The Lichens’ Microbiota, Still a Mystery? vol.12, pp.None, 2013, https://doi.org/10.3389/fmicb.2021.623839