DOI QR코드

DOI QR Code

Identification and Quantification of Tar Compounds in Plant Cell Cultures of Taxus chinensis

주목 식물세포(Taxus chinensis) 배양 유래 타르 성분 동정 및 정량

  • Kim, Gun-Joong (Department of Chemical Engineering, Kongju National University) ;
  • Park, Gyu-Yeon (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 김건중 (공주대학교 화학공학부) ;
  • 박규연 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2013.03.05
  • Accepted : 2013.05.28
  • Published : 2013.09.28

Abstract

In this study, the tar compounds derived from the plant cell cultures of Taxus chinensis were first identified and then quantified via gas chromatography/mass spectrometry (GC/MS) and gas chromatography (GC). 2-Picoline, 2,5-xylenol, acenaphthene, 1-methylnaphthalene and o-xylene were found to be the major tar compounds by biomass. These compounds were identified and confirmed by comparing their retention times with those of authentic compounds. Each compound also spiked with the pure standard. The contents of 2-picoline, 2,5-xylenol, acenaphthene, 1-methylnaphthalene, and o-xylene in biomass were 0.2512, 0.1586, 0.1240, 0.0942 and 0.0525 wt%, respectively. Liquid-liquid extraction and adsorbent treatment were able to remove 42% and 94% of the tars from biomass, respectivly. After hexane precipitation, all of the tars were perfectly removed.

본 연구에서는 gas chromatography/mass spectrometry (GC/MS)와 gas chromatography (GC)를 이용하여 주목 식물세포 Taxus chinensis 유래 타르 성분을 최초로 동정/정량하였다. 또한 식물세포배양으로부터 항암물질 paclitaxel 정제를 위한 전처리 과정에서 이들 타르 성분들의 제거 양상을 확인하였다. GC/MS 분석을 통하여 체류시간을 비교한 결과, 5종류의 타르성분이 체류시간 6.374, 8.208, 15.209, 20.045, 24.474분에서 각각 2-picoline, o-xylene, 2,5-xylenol, 1-methylnaphthalene, acenaphthene이 동정되었다. 또한 표준물질을 이용한 spike testing을 수행한 결과 동일 물질임을 재확인 하였다. GC 분석을 통하여 동정된 5종류 타르성분을 정량한 결과, 메탄올 추출물에 총 0.6805 wt% (2-picoline: 0.2512 wt%, 2,5-xylenol: 0.1586 wt%, acenaphthene: 0.1240 wt%, 1-methylnaphthalene: 0.0942 wt%, o-xylene: 0.0525 wt%) 타르 성분이 존재하였다. 액-액 추출을 수행한 결과, 메탄올 추출물 시료 내 총 타르 성분의 양 대비 42%의 타르 성분이 제거됨을 확인할 수 있었다. 1-Methylnaphthalene, acenaphthene, 2,5-xylenol, 2-picoline의 경우에는 각각 75.90, 59.92, 35.94, 29.74%로 높은 제거율을 보인 반면 oxylene의 경우에는 10.86%의 제거율로 상대적으로 적게 제거됨을 알 수 있었다. 흡착제 처리 후 2-picoline과 o-xylene의 양도 상당히 줄었지만 이들 2 종류의 타르 성분을 제외한 나머지 세 종류의 타르 성분(2,5-xylenol, 1-methylnaphthalene, acenaphthene)은 완전히 제거됨을 확인할 수 있었다. 흡착제 처리 공정에서 제거되지 않은 두 종류의 타르 성분(2-picoline, o-xylene)은 헥산 침전 공정에 의해 완전히 제거 가능하였다.

Keywords

References

  1. Brage C, Sjostrom K. 1991. Separation of phenols and aromatic hydrocar bons from biomass tar using aminopropylsilane normal-phase liquid chromatography. J. Chromatogr. 2: 303-310.
  2. Carpenter DL, Deutch SP, French RJ. 2007. Quantitative measurement of biomass gasifier tars using a molecularbeam mass spectrometer : Comparison with traditional impinger sampling. Energy & Fuels. 21: 3036-3043. https://doi.org/10.1021/ef070193c
  3. Choi HK, Adams TL, Stahlhut RW, Kim SI, Yun JH, Song BK, et al. 1999. Method for mass production of taxol by semi-continuous culture with Taxus chinensis cell culture. U.S. Patent 5,871,979.
  4. ElSohly HN, Jr. Croom EM, ElSohly MA, McChesney JD. 1997. Methods and compositions for isolating taxanes. 1997. U.S. Patent 5,618,538.
  5. Gamborg OL, Miller RA, Ojima K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50: 151-158. https://doi.org/10.1016/0014-4827(68)90403-5
  6. Han J, Kim HJ. 2008. The reduction and control technology of tar during biomass gasification/pyrolysis: An overview. Renew. Sustain. Energy Rev. 12: 397-416. https://doi.org/10.1016/j.rser.2006.07.015
  7. Han MK, Jeon KY, Mun S, Kim JH. 2010. Develoment of a micelle-fractional precipitation hybrid process for the pre-purification of paclitaxel from plant cell cultures. Process Biochem. 45: 1368-1374. https://doi.org/10.1016/j.procbio.2010.05.010
  8. Hata H, Saeki S, Kimura T, Sugahara Y, Kuroda K. 1999. Adsorption of taxol into ordered mesoporous silicas with various pore diameters. Chem. Mater. 11: 1110-1119. https://doi.org/10.1021/cm981061n
  9. Jeon KY, Kim JH. 2008. Effect of surfactant on the micelle process for the pre-purification of paclitaxel. Korean J. Biotechnol. Bioeng. 23: 557-560.
  10. Jeon KY, Kim JH. 2009. Improvement of fractional precipitation process for pre-purification of paclitaxel. Process Biochem. 44: 736-741. https://doi.org/10.1016/j.procbio.2009.03.007
  11. Kim JH. 2006. Paclitaxel : recovery and purification in commercialization step. Korean J. Biotechnol. Bioeng. 21: 1-10.
  12. Kim JH. 2009. Optimization of liquid-liquid extraction conditions for paclitaxel separation from plant cell cultures. KSBB J. 24: 212-215.
  13. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS. 2000. Fractional precipitation for paclitaxel pre-purification from plant cell cultures of Taxus chinensis. Biotechnol. Lett. 22: 1753-1756. https://doi.org/10.1023/A:1005642001815
  14. Kim JH, Kang IS, Choi HK, Hong SS, Lee HS. 2002. A novel prepurification for paclitaxel from plant cell cultures. Process Biochem. 37: 679-682. https://doi.org/10.1016/S0032-9592(01)00247-3
  15. Lee JY, Kim JH. 2011. Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Puri. Technol. 80: 240-245. https://doi.org/10.1016/j.seppur.2011.05.001
  16. McGuire WP, Rowinsky EK, Resenshein NB, Grumbine FC, Ettinger DS, Armstrong DK, et al. 1989. Taxol : a unique antineo plastic agent with significant activity in advanced ovarian epithelial neoplasms. Ann. Intern. Med. 111: 273-279. https://doi.org/10.7326/0003-4819-111-4-273
  17. Oh HJ, Jang HR, Jung KY, Kim JH. 2012. Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochem. 47: 331-334. https://doi.org/10.1016/j.procbio.2011.11.004
  18. Park YJ, Sirny RJ. 1969. Gas-liquid chromatographic determination of amino acids in some Korean foods. J. Korean Soc. Appl. Biol. Chem. 12: 43-51.
  19. Pyo SH, Song BK, Ju CH, Han BH, Choi HJ. 2005. Effects of adsorbent treatment on the purification of paclitaxel from cell cultures of Taxus chinensis and yew tree. Process Biochem. 40: 1113-1117. https://doi.org/10.1016/j.procbio.2004.03.004
  20. Pyo SH, Park HB, Song BK, Han BH, Kim JH. 2004. A largescale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985-1991. https://doi.org/10.1016/j.procbio.2003.09.028
  21. Rao KV. 1997. Method for the isolation and purification of taxol and its natural analogues. U.S. Patent 5,750,709.
  22. Rowinsky EK, Cazenave LA, Donechower RC. 1990. Taxol : a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247-1259. https://doi.org/10.1093/jnci/82.15.1247
  23. Sim HA, Lee JY, Kim JH. 2012. Evaluation of a high surface area acetone/ pentane precipitation process for the purification of paclitaxel from plant cell cultures. Sep. Puri. Technol. 89: 112-116. https://doi.org/10.1016/j.seppur.2012.01.017
  24. Uruska I, Koschmidder M. 1987. A calorimetric study of complex formation between molecular iodine and pyridine or 2- methylpyridine in weakly polar solvents. J. Chem. Soc., Perkin Trans. 2. 12: 1713-1715.

Cited by

  1. Isotherm, Kinetic, and Thermodynamic Characteristics for Adsorption of 2,5-Xylenol onto Activated Carbon vol.23, pp.5, 2018, https://doi.org/10.1007/s12257-018-0259-8
  2. Adsorption Kinetics, Mechanism, Isotherm, and Thermodynamic Analysis of Paclitaxel from Extracts of Taxus chinensis Cell Cultures onto Sylopute vol.24, pp.3, 2019, https://doi.org/10.1007/s12257-019-0001-1
  3. 실로퓨트에 의한 아세나프텐 흡착에 관한 등온흡착식, 동역학 및 열역학적 특성 vol.58, pp.1, 2013, https://doi.org/10.9713/kcer.2020.58.1.127