DOI QR코드

DOI QR Code

Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media

  • Vanavil, B. (Department of Chemical Engineering, National Institute of Technology) ;
  • Perumalsamy, M. (Department of Chemical Engineering, National Institute of Technology) ;
  • Rao, A. Seshagiri (Department of Chemical Engineering, National Institute of Technology)
  • Received : 2012.12.13
  • Accepted : 2013.06.22
  • Published : 2013.09.28

Abstract

In this paper, an air isolate (NITT6L) has been screened based on hemolytic activity, emulsification activity, drop collapsing test, and oil displacement test, as well as lipase activity. It was found that strain NITT6L was able to reduce the surface tension of the medium from 61.5 to 39.83 mN/m and could form stable emulsions with tested vegetable oils. Morphological, biochemical, 16S rRNA sequencing analyses, and fatty acid methyl ester analysis using gas chromatography confirmed that the air isolate under study was Pseudomonas aeruginosa. Characterization of the biosurfactant using agar double diffusion assay revealed that the biosurfactant was anionic in nature, and CTAB-methylene blue assay and Molisch test revealed its glycolipid nature. The FT-IR spectrum confirmed that the crude biosurfactant was a rhamnolipid. Using unoptimized medium containing sucrose as the carbon source, the isolate was found to produce 0.3 mg/ml of rhamnolipid in batch cultivation (shake flask) at $37^{\circ}C$ and pH 7. Optimization of the medium components was carried out using design of experiments and the yield of rhamnolipid has been enhanced to 4.6 mg/ml in 72 h of fermentation.

Keywords

References

  1. Abdel-Mawgoud AM, Lepine F, Dezie E. 2010. Rhamnolipids: diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86: 1323-1336. https://doi.org/10.1007/s00253-010-2498-2
  2. Abouseoud M. 2008. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination 223: 143-151. https://doi.org/10.1016/j.desal.2007.01.198
  3. Anastasia A, Pantazaki AA, Dimopoulou MI, Simou OM, Pritsa AA. 2010. Sunflower seed oil and oleic acid utilization for the production of rhamnolipids by Thermus thermophilus HB8. Appl. Microbiol. Biotechnol. 88: 939-951. https://doi.org/10.1007/s00253-010-2802-1
  4. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, et al. 2010. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444. https://doi.org/10.1007/s00253-010-2589-0
  5. Carrillo PG, Mardaraz C, Pitta-Alvarez SJ, Giulietti AM. 1996. Isolation and selection of biosurfactant-producing bacteria. World J. Microbiol. Biotechnol. 12: 82-84. https://doi.org/10.1007/BF00327807
  6. Cho SK, Shim SH, Park KR, Choi SH, Lee S. 2006. Purification and characterization of a biosurfactant produced by Pseudomonas sp. G11 by asymmetrical flow field-flow fractionation (AsFlFFF). Anal. Bioanal. Chem. 386: 2027-2033. https://doi.org/10.1007/s00216-006-0823-5
  7. Darvishi P, Ayatollahi S, Mowla D, Niazi A. 2011. Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ERCPPI-2. Colloids Surf. B Biointerfaces 84: 292-300. https://doi.org/10.1016/j.colsurfb.2011.01.011
  8. Dubey K, Juwarkar A. 2001. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World J. Microbiol. Biotechnol. 17: 61-69. https://doi.org/10.1023/A:1016606509385
  9. Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  10. Gautam KK, Tyagi VK. 2006. Microbial surfactant: a review. J. Oleo Sci. 55: 155-166. https://doi.org/10.5650/jos.55.155
  11. Khoramnia A, Lai OM, Ebrahimpour A, Tanduba CJ, Voon TS, Mukhlis S. 2010. Thermostable lipase from a newly isolated Staphylococcus xylosus strain; process optimization and characterization using RSM and ANN. Electron. J. Biotechnol. 13: 1-16.
  12. Kiran GS, Hema TA, Gandhimathi R, Selvin J, Thomas TA, Ravji TR, et al. 2009. Optimization and production of a biosurfactant from the sponge-associated marine fungus Aspergillus ustus MSF3. Colloids Surf. B Biointerfaces 73: 250-256. https://doi.org/10.1016/j.colsurfb.2009.05.025
  13. Laith AA, Zaliha RN, Rahman RA, Basri M, Salleh AB. 2007. Microbial surfactant. Asia Pac. J. Mol. Biol. Biotechnol. 15: 99-105.
  14. Leitermann F, Syldatk C, Hausmann R. 2008. Fast quantitative determination of microbial rhamnolipids from cultivation broths by ATR-FTIR spectroscopy. J. Biol. Eng. 2: 13-21. https://doi.org/10.1186/1754-1611-2-13
  15. Lindum PW, Anthoni U, Christophersen C, Eberl L, Molin S, Givskov M. 1998. N-Acyl-L-homoserine lactone autoinducers control production of an extracellular lipopeptide biosurfactant required for swarming motility of Serratia liquefaciens MG1. J. Bacteriol. 180: 6384-6388.
  16. Liu T, Hou J, Zuo Y, Bi S, Jing J. 2011. Isolation and characterization of a biosurfactant producing bacterium from Daqing oil-contaminated sites. Afr. J. Microbiol. Res. 5: 3509-3514.
  17. Lotfabad TB, Shourian M, Roostaazad R, Najafabadi AR, Adelzadeh MR, Noghabi KA. 2009. An efficient biosurfactantproducing bacterium, Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf. B Biointerfaces 69: 183-193. https://doi.org/10.1016/j.colsurfb.2008.11.018
  18. Makkar RS, Swaranjit R, Cameotra SS, Banat IM. 2011. Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1: 5-10. https://doi.org/10.1186/2191-0855-1-5
  19. Makkar RS, Cameotra SS. 2002. An update on the use of unconventional substrates for biosurfactant production and their new applications. Appl. Microbiol. Biotechnol. 58: 428-434. https://doi.org/10.1007/s00253-001-0924-1
  20. Marsudi S, Unno H, Hori K. 2008. Palm oil utilization for the simultaneous production of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 78: 955-961. https://doi.org/10.1007/s00253-008-1388-3
  21. Medina-Moreno SA, Jimenez-Islas D, Gracida-Rodriguez JN, Gutierrez-Rojas M, Diaz-Ramirez IJ. 2011. Modeling rhamnolipids production by Pseudomonas aeruginosa from immiscible carbon source in a batch system. Int. J. Environ. Sci. Technol. 8: 471-482. https://doi.org/10.1007/BF03326233
  22. Mulligan CN, Gibbs BF. 2004. Types, production and applications of biosurfactants. Proc. Indian Natl. Sci. Acad. 1: 31-55.
  23. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. 2008. Biosurfactants: properties, commercial production and application. Curr. Sci. 94: 736-747.
  24. Noudeh GD, Noodeh AD, Moshafi MH, Behravan E, Afzadi MA, Sodagar M. 2010. Investigation of cellular hydrophobicity and surface activity effects of biosynthesed biosurfactant from broth media of PTCC 1561. Afr. J. Microbiol. Res. 4: 1814-1822.
  25. Pinzon MN, Ju LK. 2009. Improved detection of rhamnolipid production using agar plates containing methylene blue and cetyltrimethyl ammonium bromide. Biotechnol. Lett. 31: 1583-1588. https://doi.org/10.1007/s10529-009-0049-7
  26. Rajan A, Soban Kumar DR, Nair JA. 2011. Isolation of a novel alkaline lipase producing fungus Aspergillus fumigatus MTCC 9657 from aged and crude rice bran oil and quantification by HPTLC. Int. J. Biol. Chem. 5: 116-126. https://doi.org/10.3923/ijbc.2011.116.126
  27. Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, et al. 1989. Effect of the carbon source on biosurfactant production by Pseudomonas aeruginosa 44T. Biotechnol. Lett. 11: 871-874. https://doi.org/10.1007/BF01026843
  28. Rodrigues L, Banat IM, Teixeira J, Oliveira R. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57: 609-618. https://doi.org/10.1093/jac/dkl024
  29. Roldan-Carrillo T, Martinez-Garcia X, Zapata-Penasco I, Castorena-Cortes G, Reyes-Avila J, Mayol-Castillo M, et al. 2011. Evaluation of the effect of nutrient ratios on biosurfactant production by Serratia marcescens using a Box-Behnken design. Colloids Surf. B Biointerfaces 86: 384-389. https://doi.org/10.1016/j.colsurfb.2011.04.026
  30. Santos SC, Fernandez LG, Rossi-Alva JC, Roque MRA. 2010. Evaluation of substrates from renewable-resources in biosurfactants production by Pseudomonas strains. Afr. J. Biotechnol. 9: 5704-5711.
  31. Santos AS, Sampaio AW, Vasquez GS, Santa-Anna LM, Pereira N, Freire MG. 2002. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeroginosa. Appl. Biochem. Biotechnol. 98: 1025-1035.
  32. Santos LG, Kappeli O, Fiechter A. 1984. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microbiol. 48: 301-305.
  33. Santa Anna LM, Sebastian GV, Menezes EP, Alves TLM, Santos AS, Pereira Jr N, et al. 2002. Production of biosurfactants from Pseudomonas aeruginosa PA1 isolated in oil environments. Braz. J. Chem. Eng. 19: 159-166. https://doi.org/10.1590/S0104-66322002000200011
  34. Satpute SK, Banat IB, Dhakephalkar PK, Banpurkar AG, Chopade BA. 2010. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 28: 436-450. https://doi.org/10.1016/j.biotechadv.2010.02.006
  35. Silva SNRL, Farias CBB, Rufino RD, Luna JM, Sarubbo LA. 2010. Glycerol as substrate for the production of biosurfactant by Pseudomonas aeruginosa UCP0992. Colloids Surf. B Biointerfaces 79: 174-183. https://doi.org/10.1016/j.colsurfb.2010.03.050
  36. Stanbury PF, Whitaker A, Hall SJ. 1995. Principles of Fermentation Technology, 2nd Ed. Butterworth-Heinemann, Burlington, MA.
  37. Techaoei S. 2011. Screening, characterization and stability of biosurfactant produced by Pseudomonas aeruginosa SCMU106 isolated from soil in Northern Thailand. Asian J. Biol. Sci. 4: 340-351. https://doi.org/10.3923/ajbs.2011.340.351
  38. Thaniyavarn J, Chongchin A, Wanitsuksombut N, Thaniyavarn S, Pinphanichakarn P, Leepipatpiboon N, et al. 2006. Biosurfactant production by Pseudomonas aeruginosa A41 using palm oil as carbon source. J. Gen. Appl. Microbiol. 52: 215-222. https://doi.org/10.2323/jgam.52.215
  39. Thaniyavarn J, Chianguthai T, Sangvanich P, Roongsawang N, Washio K, Morikawa M, et al. 2008. Production of sophorolipid biosurfactant by Pichia anomala. Biosci. Biotechnol. Biochem. 72: 2061-2068. https://doi.org/10.1271/bbb.80166
  40. Viramontes-Ramos S, Portillo-Ruiz MC, Ballinas-Casarrubias ML, Torres-Munoz JV, Rivera-Chavira BE, Navarez-Moorillon GV. 2010. Selection of biosurfactant/bioemulsifier-producing bacteria from hydrocarbon contaminated soil. Braz. J. Microbiol. 41: 668-675. https://doi.org/10.1590/S1517-83822010000300017
  41. Wang Q, Fang X, Bai B, Liang X, Shuler PJ, Goddard III WA, et al. 2007. Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol. Bioeng. 98: 842-853. https://doi.org/10.1002/bit.21462
  42. Xu Q, Nakajima M, Liu Z, Shiina T. 2011. Biosurfactants for microbubble preparation and application. Int. J. Mol. Sci. 12: 462-475. https://doi.org/10.3390/ijms12010462
  43. Zhao J, Wang Y, Chu J, Zhang S, Zhuang Y, Yuan Z. 2008. Statistical optimization of medium for the production of pyruvate oxidase by the recombinant Escherichia coli. J. Ind. Microbiol. Biotechnol. 35: 257-262. https://doi.org/10.1007/s10295-007-0301-x
  44. Zhu Y, Gan JJ, Zhang G, Yao B, Zhu W, Qin M. 2007. Reuse of waste frying oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M. J. Zhejiang Univ. Sci. 8: 1514-1520. https://doi.org/10.1631/jzus.2007.A1514

Cited by

  1. Characterization of Biosurfactant Produced by a Novel Strain ofPseudomonas aeruginosa, Isolate ADMT1 vol.21, pp.1, 2013, https://doi.org/10.1002/jsde.12021
  2. Optimization and production of curdlan gum using Bacillus cereus PR3 isolated from rhizosphere of leguminous plant vol.48, pp.5, 2013, https://doi.org/10.1080/10826068.2018.1451886
  3. Laboratory Investigation of Indigenous Consortia TERIJ-188 for Incremental Oil Recovery vol.9, pp.None, 2013, https://doi.org/10.3389/fmicb.2018.02357
  4. Bacteria Induced Degradation of Anthracene Mediated by Catabolic Enzymes vol.40, pp.2, 2013, https://doi.org/10.1080/10406638.2017.1420667
  5. Instigation of indigenous thermophilic bacterial consortia for enhanced oil recovery from high temperature oil reservoirs vol.15, pp.5, 2013, https://doi.org/10.1371/journal.pone.0229889
  6. Biosurfactants produced by metal-resistant Pseudomonas aeruginosa isolated from Zea mays rhizosphere and compost vol.12, pp.1, 2020, https://doi.org/10.22490/21456453.3849
  7. Purification and identification of surface active amphiphilic candidates produced by Geotrichum candidum MK880487 possessing antifungal property vol.42, pp.7, 2013, https://doi.org/10.1080/01932691.2020.1813157
  8. Production of lipopeptide biosurfactant in batch and fed-batch Streptomyces sp. PBD-410L cultures growing on palm oil vol.44, pp.7, 2021, https://doi.org/10.1007/s00449-021-02543-5
  9. Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites vol.8, pp.10, 2013, https://doi.org/10.1098/rsos.211003