References
-
Breznak JA, Kane MD. 1990. Microbial
$H_2/CO_2$ acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 7: 309-313. https://doi.org/10.1111/j.1574-6941.1990.tb01698.x - Call D, Logan BE. 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42: 3401-3406. https://doi.org/10.1021/es8001822
- Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 3953-3958.
- Desloover J, Arends JB, Hennebel T, Rabaey K. 2012. Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40: 1233-1238. https://doi.org/10.1042/BST20120111
- Gillett NP, Matthews HD. 2010. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5: 034011. https://doi.org/10.1088/1748-9326/5/3/034011
- Huang L, Chai X, Chen G, Logan BE. 2011. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 45: 5025-5031. https://doi.org/10.1021/es103875d
- Islam S, Suidan MT. 1998. Electrolytic denitrification: long term performance and effect of current intensity. Water Res. 32: 528-536. https://doi.org/10.1016/S0043-1354(97)00286-8
- Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. 2013. Bioelectrochemical systems for simultaneous production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydr. Energy 38: 3497-3502. https://doi.org/10.1016/j.ijhydene.2012.12.107
- Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107: 13087-13092. https://doi.org/10.1073/pnas.1004716107
- Kim MS, Cha J, Kim DH. 2012. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J. Microbiol. Biotechnol. 22: 1395-1400. https://doi.org/10.4014/jmb.1204.04010
-
Li H, O pgenorth P H, W ernick D G, R ogers S, W u T Y, Higashide W, et al. 2012. Integrated electromicrobial conversion of
$CO_2$ to higher alcohols. Science 335: 1596-1596. https://doi.org/10.1126/science.1217643 - Liang P, Fan M, Cao X, Huang X. 2009. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol. 84: 794-799. https://doi.org/10.1002/jctb.2114
-
Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of
$CO_2$ . Energy Environ. Sci. 5: 7281-7305. https://doi.org/10.1039/c2ee03403d - Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2012. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78: 8412-8420. https://doi.org/10.1128/AEM.02401-12
- Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231-253 https://doi.org/10.1051/animres:2000119
- Muller V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69: 6345-6353. https://doi.org/10.1128/AEM.69.11.6345-6353.2003
- Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl. Environ. Microbiol. 59: 695-700.
- Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77: 2882-2886. https://doi.org/10.1128/AEM.02642-10
- Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1: e00103-00110.
- Piao J. 2013. Power density enhancement of anion-exchange membrane-installed microbial fuel cell under bicarbonatebuffered cathode condition. J. Microbiol. Biotechnol. 23: 36-39. https://doi.org/10.4014/jmb.1211.11010
- Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1: 9-18. https://doi.org/10.1038/ismej.2007.4
- Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Rev. Microbiol. 8: 706-716. https://doi.org/10.1038/nrmicro2422
- Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ. Sci. 4: 216. https://doi.org/10.1039/c0ee00282h
- Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. 2012. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 109: 2904-2910. https://doi.org/10.1002/bit.24554
- Su W, Zhang L, Tao Y, Zhan G, Li D, Li D. 2012. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem. Commun. 22: 37-40. https://doi.org/10.1016/j.elecom.2012.04.030
- Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN. 2010. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ. Sci. Technol. 44: 7151-7156. https://doi.org/10.1021/es100950t
- Tugtas AE, Pavlostathis SG. 2007. Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol. Bioeng. 97: 1448-1459. https://doi.org/10.1002/bit.21338
-
Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. 2010. Bioelectrochemical reduction of
$CO_2$ to$CH_4$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101: 3085-3090. https://doi.org/10.1016/j.biortech.2009.12.077 - Wallace W, Ward T, Breen A, Attaway H. 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16: 68-72. https://doi.org/10.1007/BF01569924
- Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, et al. 2013. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6: 217-224. https://doi.org/10.1039/c2ee23350a
Cited by
- Removal of Sulfide and Production of Methane from Carbon Dioxide in Microbial Fuel Cells-Microbial Electrolysis Cell (MFCs-MEC) Coupled System vol.172, pp.5, 2013, https://doi.org/10.1007/s12010-013-0718-9
- Recent Advances in Microbial Electrocatalysis vol.5, pp.4, 2013, https://doi.org/10.1007/s12678-014-0198-x
- A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis vol.2, pp.32, 2013, https://doi.org/10.1039/c4ta03101f
- Regulation of electron transfer processes affects phototrophic mat structure and activity vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.00909
- Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2 vol.49, pp.14, 2013, https://doi.org/10.1021/es506149d
- High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide vol.49, pp.22, 2013, https://doi.org/10.1021/acs.est.5b03821
- Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction vol.8, pp.12, 2013, https://doi.org/10.1039/c5ee03088a
- An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction vol.183, pp.None, 2013, https://doi.org/10.1039/c5fd00041f
- Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide vol.3, pp.4, 2016, https://doi.org/10.1002/celc.201500530
- Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide vol.23, pp.22, 2013, https://doi.org/10.1007/s11356-016-7196-x
- Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions vol.50, pp.4, 2013, https://doi.org/10.1021/acs.est.5b04431
- Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge vol.4, pp.9, 2013, https://doi.org/10.1021/acssuschemeng.6b01221
- Perturbations and 3R in carbon management vol.24, pp.5, 2017, https://doi.org/10.1007/s11356-016-8143-6
- An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide vol.19, pp.24, 2017, https://doi.org/10.1039/c7gc01801k
- Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis vol.12, pp.1, 2013, https://doi.org/10.1371/journal.pone.0170406
- The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation vol.20, pp.14, 2013, https://doi.org/10.1039/c8gc00572a
- Effects of Applied Potential and Reactants to Hydrogen-Producing Biocathode in a Microbial Electrolysis Cell vol.6, pp.None, 2013, https://doi.org/10.3389/fchem.2018.00318
- High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene–nickel foam as cathode vol.93, pp.2, 2013, https://doi.org/10.1002/jctb.5376
- Electro-Fermentation in Aid of Bioenergy and Biopolymers vol.11, pp.2, 2013, https://doi.org/10.3390/en11020343
- Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes vol.84, pp.4, 2013, https://doi.org/10.1128/aem.02242-17
- AnAcetobacteriumstrain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism asSporomusa sphaeroides vol.95, pp.2, 2013, https://doi.org/10.1093/femsec/fiy222
- Electrochemical Reduction of Carbon Dioxide to Value‐Added Products: The Electrocatalyst and Microbial Electrosynthesis vol.19, pp.7, 2019, https://doi.org/10.1002/tcr.201800100
- Mo 2 C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO 2 reduction vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1413-z
- Extracellular Electron Uptake by Acetogenic Bacteria: Does H 2 Consumption Favor the H 2 Evolution Reaction on a Cathode or Metallic Iron? vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.02997
- Using Cathodic Poised Potential Experiments to Investigate Extracellular Electron Transport in the Crustal Deep Biosphere of North Pond, Mid-Atlantic Ridge vol.8, pp.None, 2013, https://doi.org/10.3389/fenvs.2020.00011
- Bioelectrosynthesis of Organic and Inorganic Chemicals in Bioelectrochemical System vol.24, pp.2, 2013, https://doi.org/10.1061/(asce)hz.2153-5515.0000491
- Artificial Electron Mediator with Nanocubic Architecture Highly Promotes Microbial Electrosynthesis from Carbon Dioxide vol.8, pp.17, 2013, https://doi.org/10.1021/acssuschemeng.0c01276
- Bioelectrosynthetic Conversion of CO2 Using Different Redox Mediators: Electron and Carbon Balances in a Bioelectrochemical System vol.13, pp.10, 2020, https://doi.org/10.3390/en13102572
- Waste C1 Gases as Alternatives to Pure CO2 Improved the Microbial Electrosynthesis of C4 and C6 Carboxylates vol.8, pp.23, 2013, https://doi.org/10.1021/acssuschemeng.0c02515
- Enhancing Microbial Electrosynthesis of Acetate and Butyrate from CO2 Reduction Involving Engineered Clostridium ljungdahlii with a Nickel-Phosphide-Modified Electrode vol.34, pp.7, 2013, https://doi.org/10.1021/acs.energyfuels.0c01710
- A Comprehensive Understanding of Electro-Fermentation vol.6, pp.3, 2013, https://doi.org/10.3390/fermentation6030092
- In Situ Growth of Mo2C on Cathodes for Efficient Microbial Electrosynthesis of Acetate from CO2 vol.34, pp.9, 2013, https://doi.org/10.1021/acs.energyfuels.0c02422
- Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: Impact of temperature vol.790, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2021.148128
- Microbial electrochemical fluidized bed reactor (ME-FBR): An energy-efficient advanced solution for treating real brewery wastewater with different initial organic loading rates. vol.9, pp.6, 2013, https://doi.org/10.1016/j.jece.2021.106619
- High capacitive rGO/WO3 supported nanofibers as cathode catalyst to boost-up the CO2 sequestration via microbial electrosynthesis vol.9, pp.6, 2013, https://doi.org/10.1016/j.jece.2021.106650