DOI QR코드

DOI QR Code

Production of Acetate from Carbon Dioxide in Bioelectrochemical Systems Based on Autotrophic Mixed Culture

  • Su, Min (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences) ;
  • Jiang, Yong (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences) ;
  • Li, Daping (Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences)
  • Received : 2013.04.15
  • Accepted : 2013.05.08
  • Published : 2013.08.28

Abstract

Bioelectrochemical systems (BESs) have been suggested as a new technology for wastewater treatment while accomplishing energy and chemical generation. This study describes the performance of BESs based on mixed culture that are capable of reducing carbon dioxide to acetate. The cathode potential was a critical factor that affected the performance of the BESs. The rate of acetate production increased as the electrode potential became more negative, from 0.38 mM $d^{-1}$ (-900 mV vs. Ag/AgCl) to 2.35 mM $d^{-1}$ (-1,100 mV), while the electron recovery efficiency of carbon dioxide reduction to acetate increased from 53.6% to 89.5%. The microbial population was dominated by relatives of Acetobacterium woodii when a methanogenic inhibitor was added to the BESs initially.

Keywords

References

  1. Breznak JA, Kane MD. 1990. Microbial $H_2/CO_2$ acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol. Rev. 7: 309-313. https://doi.org/10.1111/j.1574-6941.1990.tb01698.x
  2. Call D, Logan BE. 2008. Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42: 3401-3406. https://doi.org/10.1021/es8001822
  3. Cheng S, Xing D, Call DF, Logan BE. 2009. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 3953-3958.
  4. Desloover J, Arends JB, Hennebel T, Rabaey K. 2012. Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40: 1233-1238. https://doi.org/10.1042/BST20120111
  5. Gillett NP, Matthews HD. 2010. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases. Environ. Res. Lett. 5: 034011. https://doi.org/10.1088/1748-9326/5/3/034011
  6. Huang L, Chai X, Chen G, Logan BE. 2011. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ. Sci. Technol. 45: 5025-5031. https://doi.org/10.1021/es103875d
  7. Islam S, Suidan MT. 1998. Electrolytic denitrification: long term performance and effect of current intensity. Water Res. 32: 528-536. https://doi.org/10.1016/S0043-1354(97)00286-8
  8. Jiang Y, Su M, Zhang Y, Zhan G, Tao Y, Li D. 2013. Bioelectrochemical systems for simultaneous production of methane and acetate from carbon dioxide at relatively high rate. Int. J. Hydr. Energy 38: 3497-3502. https://doi.org/10.1016/j.ijhydene.2012.12.107
  9. Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A, et al. 2010. Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc. Natl. Acad. Sci. USA 107: 13087-13092. https://doi.org/10.1073/pnas.1004716107
  10. Kim MS, Cha J, Kim DH. 2012. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens. J. Microbiol. Biotechnol. 22: 1395-1400. https://doi.org/10.4014/jmb.1204.04010
  11. Li H, O pgenorth P H, W ernick D G, R ogers S, W u T Y, Higashide W, et al. 2012. Integrated electromicrobial conversion of $CO_2$ to higher alcohols. Science 335: 1596-1596. https://doi.org/10.1126/science.1217643
  12. Liang P, Fan M, Cao X, Huang X. 2009. Evaluation of applied cathode potential to enhance biocathode in microbial fuel cells. J. Chem. Technol. Biotechnol. 84: 794-799. https://doi.org/10.1002/jctb.2114
  13. Markewitz P, Kuckshinrichs W, Leitner W, Linssen J, Zapp P, Bongartz R, et al. 2012. Worldwide innovations in the development of carbon capture technologies and the utilization of $CO_2$. Energy Environ. Sci. 5: 7281-7305. https://doi.org/10.1039/c2ee03403d
  14. Marshall CW, Ross DE, Fichot EB, Norman RS, May HD. 2012. Electrosynthesis of commodity chemicals by an autotrophic microbial community. Appl. Environ. Microbiol. 78: 8412-8420. https://doi.org/10.1128/AEM.02401-12
  15. Moss AR, Jouany JP, Newbold J. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49: 231-253 https://doi.org/10.1051/animres:2000119
  16. Muller V. 2003. Energy conservation in acetogenic bacteria. Appl. Environ. Microbiol. 69: 6345-6353. https://doi.org/10.1128/AEM.69.11.6345-6353.2003
  17. Muyzer G, Dewaal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s ribosomal RNA. Appl. Environ. Microbiol. 59: 695-700.
  18. Nevin KP, Hensley SA, Franks AE, Summers ZM, Ou J, Woodard TL, et al. 2011. Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl. Environ. Microbiol. 77: 2882-2886. https://doi.org/10.1128/AEM.02642-10
  19. Nevin KP, Woodard TL, Franks AE, Summers ZM, Lovley DR. 2010. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. mBio 1: e00103-00110.
  20. Piao J. 2013. Power density enhancement of anion-exchange membrane-installed microbial fuel cell under bicarbonatebuffered cathode condition. J. Microbiol. Biotechnol. 23: 36-39. https://doi.org/10.4014/jmb.1211.11010
  21. Rabaey K, Rodriguez J, Blackall LL, Keller J, Gross P, Batstone D, et al. 2007. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1: 9-18. https://doi.org/10.1038/ismej.2007.4
  22. Rabaey K, Rozendal RA. 2010. Microbial electrosynthesis - revisiting the electrical route for microbial production. Nature Rev. Microbiol. 8: 706-716. https://doi.org/10.1038/nrmicro2422
  23. Steinbusch KJJ, Hamelers HVM, Plugge CM, Buisman CJN. 2011. Biological formation of caproate and caprylate from acetate: fuel and chemical production from low grade biomass. Energy Environ. Sci. 4: 216. https://doi.org/10.1039/c0ee00282h
  24. Su W, Zhang L, Li D, Zhan G, Qian J, Tao Y. 2012. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol. Bioeng. 109: 2904-2910. https://doi.org/10.1002/bit.24554
  25. Su W, Zhang L, Tao Y, Zhan G, Li D, Li D. 2012. Sulfate reduction with electrons directly derived from electrodes in bioelectrochemical systems. Electrochem. Commun. 22: 37-40. https://doi.org/10.1016/j.elecom.2012.04.030
  26. Ter Heijne A, Strik DPBTB, Hamelers HVM, Buisman CJN. 2010. Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ. Sci. Technol. 44: 7151-7156. https://doi.org/10.1021/es100950t
  27. Tugtas AE, Pavlostathis SG. 2007. Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol. Bioeng. 97: 1448-1459. https://doi.org/10.1002/bit.21338
  28. Villano M, Aulenta F, Ciucci C, Ferri T, Giuliano A, Majone M. 2010. Bioelectrochemical reduction of $CO_2$ to $CH_4$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101: 3085-3090. https://doi.org/10.1016/j.biortech.2009.12.077
  29. Wallace W, Ward T, Breen A, Attaway H. 1996. Identification of an anaerobic bacterium which reduces perchlorate and chlorate as Wolinella succinogenes. J. Ind. Microbiol. 16: 68-72. https://doi.org/10.1007/BF01569924
  30. Zhang T, Nie H, Bain TS, Lu H, Cui M, Snoeyenbos-West OL, et al. 2013. Improved cathode materials for microbial electrosynthesis. Energy Environ. Sci. 6: 217-224. https://doi.org/10.1039/c2ee23350a

Cited by

  1. Removal of Sulfide and Production of Methane from Carbon Dioxide in Microbial Fuel Cells-Microbial Electrolysis Cell (MFCs-MEC) Coupled System vol.172, pp.5, 2013, https://doi.org/10.1007/s12010-013-0718-9
  2. Recent Advances in Microbial Electrocatalysis vol.5, pp.4, 2013, https://doi.org/10.1007/s12678-014-0198-x
  3. A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis vol.2, pp.32, 2013, https://doi.org/10.1039/c4ta03101f
  4. Regulation of electron transfer processes affects phototrophic mat structure and activity vol.6, pp.None, 2015, https://doi.org/10.3389/fmicb.2015.00909
  5. Selective Enrichment Establishes a Stable Performing Community for Microbial Electrosynthesis of Acetate from CO2 vol.49, pp.14, 2013, https://doi.org/10.1021/es506149d
  6. High Acetic Acid Production Rate Obtained by Microbial Electrosynthesis from Carbon Dioxide vol.49, pp.22, 2013, https://doi.org/10.1021/acs.est.5b03821
  7. Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction vol.8, pp.12, 2013, https://doi.org/10.1039/c5ee03088a
  8. An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction vol.183, pp.None, 2013, https://doi.org/10.1039/c5fd00041f
  9. Biologically Induced Hydrogen Production Drives High Rate/High Efficiency Microbial Electrosynthesis of Acetate from Carbon Dioxide vol.3, pp.4, 2016, https://doi.org/10.1002/celc.201500530
  10. Application of gas diffusion biocathode in microbial electrosynthesis from carbon dioxide vol.23, pp.22, 2013, https://doi.org/10.1007/s11356-016-7196-x
  11. Bringing High-Rate, CO2-Based Microbial Electrosynthesis Closer to Practical Implementation through Improved Electrode Design and Operating Conditions vol.50, pp.4, 2013, https://doi.org/10.1021/acs.est.5b04431
  12. Biocathodic Methanogenic Community in an Integrated Anaerobic Digestion and Microbial Electrolysis System for Enhancement of Methane Production from Waste Sludge vol.4, pp.9, 2013, https://doi.org/10.1021/acssuschemeng.6b01221
  13. Perturbations and 3R in carbon management vol.24, pp.5, 2017, https://doi.org/10.1007/s11356-016-8143-6
  14. An overview of cathode materials for microbial electrosynthesis of chemicals from carbon dioxide vol.19, pp.24, 2017, https://doi.org/10.1039/c7gc01801k
  15. Biofilm Formation by Clostridium ljungdahlii Is Induced by Sodium Chloride Stress: Experimental Evaluation and Transcriptome Analysis vol.12, pp.1, 2013, https://doi.org/10.1371/journal.pone.0170406
  16. The environmental biorefinery: state-of-the-art on the production of hydrogen and value-added biomolecules in mixed-culture fermentation vol.20, pp.14, 2013, https://doi.org/10.1039/c8gc00572a
  17. Effects of Applied Potential and Reactants to Hydrogen-Producing Biocathode in a Microbial Electrolysis Cell vol.6, pp.None, 2013, https://doi.org/10.3389/fchem.2018.00318
  18. High efficiency microbial electrosynthesis of acetate from carbon dioxide using a novel graphene–nickel foam as cathode vol.93, pp.2, 2013, https://doi.org/10.1002/jctb.5376
  19. Electro-Fermentation in Aid of Bioenergy and Biopolymers vol.11, pp.2, 2013, https://doi.org/10.3390/en11020343
  20. Effect of Start-Up Strategies and Electrode Materials on Carbon Dioxide Reduction on Biocathodes vol.84, pp.4, 2013, https://doi.org/10.1128/aem.02242-17
  21. AnAcetobacteriumstrain isolated with metallic iron as electron donor enhances iron corrosion by a similar mechanism asSporomusa sphaeroides vol.95, pp.2, 2013, https://doi.org/10.1093/femsec/fiy222
  22. Electrochemical Reduction of Carbon Dioxide to Value‐Added Products: The Electrocatalyst and Microbial Electrosynthesis vol.19, pp.7, 2019, https://doi.org/10.1002/tcr.201800100
  23. Mo 2 C-induced hydrogen production enhances microbial electrosynthesis of acetate from CO 2 reduction vol.12, pp.None, 2013, https://doi.org/10.1186/s13068-019-1413-z
  24. Extracellular Electron Uptake by Acetogenic Bacteria: Does H 2 Consumption Favor the H 2 Evolution Reaction on a Cathode or Metallic Iron? vol.10, pp.None, 2013, https://doi.org/10.3389/fmicb.2019.02997
  25. Using Cathodic Poised Potential Experiments to Investigate Extracellular Electron Transport in the Crustal Deep Biosphere of North Pond, Mid-Atlantic Ridge vol.8, pp.None, 2013, https://doi.org/10.3389/fenvs.2020.00011
  26. Bioelectrosynthesis of Organic and Inorganic Chemicals in Bioelectrochemical System vol.24, pp.2, 2013, https://doi.org/10.1061/(asce)hz.2153-5515.0000491
  27. Artificial Electron Mediator with Nanocubic Architecture Highly Promotes Microbial Electrosynthesis from Carbon Dioxide vol.8, pp.17, 2013, https://doi.org/10.1021/acssuschemeng.0c01276
  28. Bioelectrosynthetic Conversion of CO2 Using Different Redox Mediators: Electron and Carbon Balances in a Bioelectrochemical System vol.13, pp.10, 2020, https://doi.org/10.3390/en13102572
  29. Waste C1 Gases as Alternatives to Pure CO2 Improved the Microbial Electrosynthesis of C4 and C6 Carboxylates vol.8, pp.23, 2013, https://doi.org/10.1021/acssuschemeng.0c02515
  30. Enhancing Microbial Electrosynthesis of Acetate and Butyrate from CO2 Reduction Involving Engineered Clostridium ljungdahlii with a Nickel-Phosphide-Modified Electrode vol.34, pp.7, 2013, https://doi.org/10.1021/acs.energyfuels.0c01710
  31. A Comprehensive Understanding of Electro-Fermentation vol.6, pp.3, 2013, https://doi.org/10.3390/fermentation6030092
  32. In Situ Growth of Mo2C on Cathodes for Efficient Microbial Electrosynthesis of Acetate from CO2 vol.34, pp.9, 2013, https://doi.org/10.1021/acs.energyfuels.0c02422
  33. Mixed-culture biocathodes for acetate production from CO2 reduction in the microbial electrosynthesis: Impact of temperature vol.790, pp.None, 2013, https://doi.org/10.1016/j.scitotenv.2021.148128
  34. Microbial electrochemical fluidized bed reactor (ME-FBR): An energy-efficient advanced solution for treating real brewery wastewater with different initial organic loading rates. vol.9, pp.6, 2013, https://doi.org/10.1016/j.jece.2021.106619
  35. High capacitive rGO/WO3 supported nanofibers as cathode catalyst to boost-up the CO2 sequestration via microbial electrosynthesis vol.9, pp.6, 2013, https://doi.org/10.1016/j.jece.2021.106650